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Abstract. We present a mathematical framework for understanding
when successfully distinguishing a person from all other persons in a
data set—a phenomenon which we call isolation—may enable identifica-
tion, a notion which is central to deciding whether a release based on the
data set is subject to data protection regulation. We show that a baseline AQ1

degree of isolation is unavoidable in the sense that isolation can typically
happen with high probability even before a release was made about the
data set and hence identification is not enabled. We then describe settings AQ2

where isolation resulting from a data release may enable identification.

Keywords: privacy · identification · isolation · data protection

1 Introduction

The notion of identification is central to privacy and data protection regulation.
For example, the GDPR regulates the processing of personal data: “any infor-
mation relating to an identified or identifiable natural person.”1 But the GDPR
leaves “identifiable” undefined. What constitutes identification?

It is an old idea that identification may be possible when attributes together
uniquely distinguish a individual within a population. In 1986, Dalenius wrote
that “it is well known” that “the data for some variables may, for some indi-
viduals, be unique and publicly known” and expose those individuals to record
linkage attacks [6]. The U.S. National Institute of Standards and Technology even
defines identification as “the process of using claimed or observed attributes of
an entity to single out the entity among other entities in a set of identities.”2

Sweeney carried out this process in her re-identification of MA Governor Weld
in a dataset of state employee health records. Moreover, she showed that very
few attributes are needed to uniquely distinguish most US residents: 5-digit ZIP,
gender, and date of birth suffice for 87% of respondents in the 1990 Census [15].
1 Regulation (EU) 2016/679 (General Data Protection Regulation), Article 4.
2 For variations and sources, see https://csrc.nist.gov/glossary/term/identification.
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2 G. D’Acquisto et al.

But there is an important a difference between distinguishing a person within
a dataset or a sample—which this paper calls isolation—and distinguishing a
person within a population [3,8]. Consider the study by De Montjoye et al.
showing that four random time-location pairs were enough to isolate 95% of
individuals’ records in a dataset on 1.5M people. Sánchez et al. reply: “With a
nonexhaustive sample, an individual’s sample uniqueness/unicity does not imply
population uniqueness and, hence, does not allow unequivocal reidentification”
[14, citing [2]]. With this specific claim, we agree – absent other information, it’s
not clear to what extent these isolations amount to identification. Of course, if
one can also check whether a given person was in the sample, then isolation in
the sample plus the fact that person was in the sample results in isolation in the
population.

1.1 This Work’s Contributions

Identification and Isolation. While our goal is to provide a better understand-
ing of identification to help design approaches for releasing information while
protecting individual privacy, we do not attempt to define what identification
means in a mathematically formal way. We see identification as an inherently-
fuzzy legal concept for which a satisfactory mathematical treatment may not
even exist. What we do is take a closer look at the related phenomenon of iso-
lation.

In a little more detail, we consider a setting where an information holder
produces a data release R based on a table X of PII. An adversarial information
receiver tries to use the release R to identify one or more of the data items in X.
We say that the information receiver isolates in X if they succeed in producing a
description3 that matches exactly one person in X. That isolation and identifica-
tion are related follows from observing that isolation has been a major stepping
stone towards identification in linkage attacks, where, typically, an entry of a pre-
sumably deidentified dataset is first isolated and then re-identified via linkage
with an dataset containing identifying information (see, e.g., [15]).

We provide novel additions to the discussion of the relationship between
identification and isolation:

1. We argue that some baseline degree of isolation is unavoidable and does
not enable identification. In Sects. 3.1 and 3.2 we show that an informa-
tion receiver having knowledge of the probability distribution underlying the
data in X can isolate individuals in it prior to seeing any data release. (In
Appendix A we extend the results to the case of an information receiver
having only partial knowledge of the distribution.)

2. In Sect. 4 we ask when a data release leads to identification. We identify
isolation gain—a measure of how an information receiver’s confidence in an
isolation attempt grows once they receive a release R based on the dataset.
In Sect. 4.2 we revisit examples from the re-identification literature, analyzing
them through this lens.

3 For example: (25 ≤ Age ≤ 28) ∧ (10, 000 ≤ Salary ≤ 50, 000).
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From Isolation to Identification 3

Postulates About Identification. As a surrogate for defining identification math-
ematically, our analysis proceeds from two postulates about identification which
we believe are simple, intuitive, and uncontroversial.

Postulate 1. If a release R contains no information derived from the dataset
X, then R itself cannot be used to identify any individual in X.

In particular, the baseline degree of isolation (item 1 above) is unavoidable does
not constitute “singling out” as used in the GDPR.4

Postulate 2. A description of an individual record in X may enable identifica-
tion if it is specific enough to uniquely distinguish the corresponding individual in
the underlying population. A release R from which such a description is derived
may enable identification.

We stress that these postulates do not characterize identification. The postu-
lates describe extreme cases leaving a bulk of real-world data analyses somewhere
in gray area in between. Even so, these postulates are useful as they allow us to
describe the outer bounds of identification from data release, or a lack thereof.

1.2 Related Work

As discussed above and in Sect. 4.2 below, a long line of work studies re-
identification from anonymized or de-identified data releases [2–4,6,7,11,12,14,
15].5 A recent work of particular relevance is that of Rocher, Hendricks, and De
Montjoye [12], who address the gap between sample- and population-uniqueness
by showing that it is often possible to empirically estimate the probability that
an isolating set of attributes uniquely distinguishes an individual within the
underlying population, (an estimation task with a long history [3,8]).

Postulate 1 is implicit in Ruggles and Van Riper’s critique of the US Census
Bureau’s reconstruction of the 2010 Decennial Census: empirically comparing
those results to a baseline that “would be expected by chance” [13]. Jarmin et
al. analyze disclosure risk assessment frameworks in part using as a santity check
that they should “deem releasing uniformative statistics not a disclosure risk”
[10].

We use Postulate 1 to derive a baseline level of isolation that does not amount
to disclosure of any sort. A line of work does a version of this by instead excluding
an individual from the data analysis [9, and citations therein]. Most recently,
Francis and Wagner put forward a “non-member framework”6, empirically apply
it to prior attacks, and discuss its relevance to the concepts of identifiability and
anonymization under the GDPR to past re-identification studies [9].
4 General Data Protection Regulation, Recital 26. See also: Article 29 Working Party,

Opinion 05/2014 on Anonymisation Techniques.
5 See citations in [12] for more.
6 “If an individual is not present in a dataset, and is independent of all other individu-

als in the dataset, then the release of that dataset does not violate that individual’s
privacy.”.
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4 G. D’Acquisto et al.

Our approach builds on prior work by Cohen and Nissim [5] and Altman et
al. [1]. These works introduce an abstract framework for isolation and analyze
its relation with the GDPR notion of singling out, based on what we call Pos-
tulate 1. The current paper connects isolation with identification by introducing
Postulate 2, extends the prior work by considering multiple isolation attempts,
and presents its findings in more concrete settings. We also consider heuristic
isolation strategies for the setting where the information receiver does not have
sufficient knowledge of the probability measure underlying the data.

2 The Isolation Problem

Consider a scenario where some personal data is stored by an information holder,
and an information receiver wishes to uncover that information (or part of it).
The information holder owns a table (the “ground truth” table) with a row for
each individual,

X = (x1, x2, . . . , xn).

As an example, each row xi may take value in some space D ⊂ Rd. We assume
that we can build a probability space on D by defining the space of elementary
events and a probability measure P , so that we can assign a probability value
to all events (i.e., subsets of D) forming a Borel field. The table X is assumed
to contain the result of n i.i.d. random samples draw from P .

We define the following basic statistic, computed over X:

Definition 1 (counting function). For a generic subdomain B ⊆ D, the
number of instances in X falling in it is given by the counting function:

HX(B) =
n∑

i=1

I(xi ∈ B).

The information holder releases aggregate data about X. For concreteness,
we assume that a data release R consists of a collection of pairs R = {(Ai,mi)}
where each of the pairs in R declares a subdomain Ai ⊆ D and a number mi

where mi = HX(Ai) + εi. In the case of absence of noise, εi = 0 for all i and
therefore mi is guaranteed to be the exact number of individuals in X that fall
into the subdomain Ai. In the case of a noisy release, the noise variable εi is
assumed to be drawn from a known distribution.

Initially, the release is empty (i.e., initially R0 = ∅) and the only informa-
tion known to the information receiver is the data subspace D, the underlying
probability measure P , and the number of entries n in X.7 The information
receiver’s initial knowledge (D,P, n,R0) about X is updated with the aggregate
counts R = {(Ai,mi)} once they are released. We assume the receiver also knows
whether the release is noiseless or noisy, along with the noise distribution in the
latter case.
7 Our results are robust to a substantial relaxation of these assumptions, in particular,

knowledge of the distribution P and the number of records n may be approximate.
See Remark 3 and Appendix A.
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From Isolation to Identification 5

2.1 Isolation

We define isolation to happen when the information receiver outputs a descrip-
tion matching exactly one row in X, formally:

Definition 2 (isolation). We say that B ⊆ D isolates in X if HX(B) = 1.

Guessing an isolating B. The information receiver may use their knowledge
about X—namely, the data domain D, probability measure P , number of entries
n, and a release R—to guess one or more sets that isolate in X. That is, the
receiver comes up with subsets B1, B2, . . . , Bk ⊆ D that the information receiver
hopes isolate many of the entries in X.
Verifying that a Guess B Isolates. If the information receiver has query access
to a noiseless release mechanism then they can ask for the release (B,HX(B)),
and hence check whether the guess B indeed consists an isolation.8,9

Remark 1. The information receiver may try to isolate in X even before receiving
any release (i.e., only given D, P , n, and R0 = ∅). With a release R %= ∅ made
about X, the receiver can improve its confidence in guessing an isolating B. The
information receiver’s rate of successful isolation given R0 can be thought of as a
baseline to which their isolation ability given a release R %= ∅ can be compared.

3 Optimal Isolation Without Any Release

We now consider strategies an information receiver may use to isolate one or
more individuals in the dataset X. We analyze the information receiver’s isolation
ability prior to any release R, i.e., with R0 = ∅. The analysis is done under the
assumption that the information receiver has knowledge of the data domain D,
the underlying probability measure P , and the number of elements n in X.10

Remark 2. The same analysis carried out in this section holds for the case of a
non-empty release R by replacing the probability measure P with the probability
measure resulting from conditioning P on the release R.

Subsections 3.1 and 3.2 discuss the guessing strategies the information
receiver may use assuming they have perfect knowledge of the underlying prob-
ability measure P . In Appendix A we discuss how these strategies can be used
by an information receiver that does not have complete knowledge of P .
8 Query access to the release mechanism can also be used in other ways, see Remark 4

below.
9 Access to alternative sources of information may also be used for boosting the infor-

mation receiver’s confidence that a guess B isolates.
10 The number of records n is included as part of the the receiver’s prior knowledge

since n can often be inferred (exactly or approximately) from public information.
Examples include (i) where a survey design specifying n was made public prior to the
collection of information, and (ii) where n was made public in previous surveys (e.g.,
a census). For a reader who considers n as part of the release, this section should be
understood as demonstrating that the release of n alone suffices for isolation.
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6 G. D’Acquisto et al.

3.1 A Single Isolation Guess

We begin with the analysis of how the information receiver may make one guess
B so as to maximize their probability of a successful isolation.

For B ⊆ A, P (B) is the probability that an individual sampled according
to P falls into the subdomain B. The probability that B contains exactly one
individual from the n individuals in D (i.e., that some individual from the n
individuals in D has been isolated) is given by the expression

piso(B) := Pr
X∼P n

[HX(B) = 1] = n · P (B) · (1 − P (B))n−1. (1)

Observe that piso(B) depends only on P (B). The information receiver can choose
the subset B so that P (B) maximizes piso(B). All that remains is to determine
the value P (B) that achieves the maximum.

Theorem 1. The probability of isolation piso(B) achieves its maximum value of(
1 − 1

n

)n−1 ≈ 1
e ≈ 0.37 when p(B) = 1

n .

Proof. To simplify notation, let piso = piso(B) and p = P (B). We compute the
first and second derivatives of Eq. (1):

∂piso

∂p
= n(1 − p)n−2(1 − np), and

∂2piso

∂p2
= −n(n − 1)(1 − p)n−3(2 − np).

The first derivative is positive on p ∈ [0, 1
n ), zero at p = 1

n , and negative on
p ∈ ( 1

n , 1]. The second derivative is negative for p < 2
n . Hence, p = 1

n maximizes
piso, with maximum value n · 1

n ·
(
1 − 1

n

)n−1 =
(
1 − 1

n

)n−1
.

Theorem 1 may be interpreted as follows: if the information receiver can
make a single guess B, the receiver maximizes the probability that B isolates
in X by choosing B such that p(B) = 1

n , in which case the receiver’s guess is
successful with probability about 0.37.

Remark 3. If instead of picking B such that p(B) = 1
n the information receiver

picks B such that p(B) = c
n then the isolation probability drops to

n · c

n
·
(
1 − c

n

)n−1
=

c

1 − c
n

(
1 − c

n

)n
≈ c

ec
.

– This implies that the result of Theorem 1 is only mildly sensitive to errors in
the information receiver’s knowledge of P and n. For example, if the receiver’s
knowledge is off by a factor of at most 2 (i.e., 1

2n ≤ P (B) ≤ 2
n or, equivalently,

1
2 ≤ c ≤ 2), then piso(B) ! 0.27.

– If, however, the information receiver chooses to make a guess with p(B) = c
n

where c is very small, then we get ec ≈ 1 and and the isolation probability is
piso(B) ≈ c, i.e., also very small.
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From Isolation to Identification 7

3.2 Multiple Isolation Guesses

We now consider an information receiver that makes k > 1 guesses B1, . . . , Bk ⊆
D trying to isolate multiple individuals in X. We will require that the guesses Bi

are mutually disjoint, so it is impossible for two of them to isolate the same ele-
ment in X. The receiver’s goal is to maximize the total number isolated elements
in X (i.e., number of guesses in B1, . . . , Bk which successfully isolate in X), i.e.,∑k

i=1 I(HX(Bi) = 1). As discussed in Sect. 2.1, if after choosing B1, . . . , Bk the
information receiver can issue them as queries then the receiver would learn with
certainty which of them isolates.

Remark 4. Our analysis considers an oblivious information receiver which makes
all the guesses B1, . . . , Bk at once. Indeed, this is the information receiver’s only
choice if they cannot issue queries and obtain more releases. However, if the
information receiver may issue queries, then an adaptive strategy would be more
effective for multiple isolations. In such a strategy the receiver would choose
guess Bi+1 after seeing HX(Bi). As an example, an adaptive adversary may
choose to use a divide-and-conquer strategy to isolate elements in X.

Remark 5. We ignore other, less direct, modes of isolation. For example, if Bi

is a strict subset of Bj and HX(Bi) = HX(Bj) − 1 then their difference Bj \ Bi

isolates.

Observation 1. If the number of guesses k ≤ n then we can use Theorem 1:
the information receiver may choose k disjoint subsets where P (Bi) = 1

n for all
i = 1, . . . , k. In expectation about k

e of the guesses Bi would isolate.

The information receiver’s optimal strategy in the case k > n is characterized
by the following theorem:

Theorem 2. When k ≥ n, the expected number of isolations achieves its maxi-
mum when P (Bi) = 1

k for all i ∈ 1, . . . , k.

Proof. To simplify notation, let pi = P (Bi). For 0 ≤ p ≤ 1, define f(p) =
n · p · (1− p)n−1. For p = (p1, . . . , pk), define F (p) =

∑k
i=1 f(pi). By Eq. (1), we

can rewrite the expected number of isolations as F (p):

E

(
k∑

i=1

I(HX(Bi) = 1)

)
=

k∑

i=1

E(piso(Bi)) =
k∑

i=1

f(pi) = F (p).

Fix p = (p1, . . . , pk) arbitrarily and let p∗ = ( 1
k , . . . , 1

k ). We must show that
F (p) ≤ F (p∗). To do so, we will give two intermediate variables p′ and p′′ and
show that F (p) ≤ F (p′) ≤ F (p′′) ≤ F (p∗). We use two facts about f already
shown in the proof of Theorem 1. First, f is (strictly) concave in the interval
0 ≤ p ≤ 1

n . Second, f is (strictly) increasing as p → 1
n from either side.

Construct p′ by clamping each pi to the interval [0, 1/n]. Namely, p′
i =

min(pi, 1/n) for each i = 1, . . . , k. If p′
i = pi, then f(pi) = f(p′

i). Otherwise,
1/n ≤ p′

i < pi and hence f(pi) < f(p′
i). Therefore F (p) ≤ F (p′).
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8 G. D’Acquisto et al.

Observe that 0 ≤
∑

p′
i ≤ 1. Construct p′′ arbitrarily such

∑
p′′

i = 1 and
p′

i ≤ p′′
i ≤ 1/n for all i. This is possible because

∑k
i=1

1
n = k

n ≥ 1. For all i,
f(p′′

i ) ≥ f(p′
i). Therefore F (p′) ≤ F (p′′).

By construction, 0 ≤ p′′
i ≤ 1/n for all i. Because f is concave on [0, 1/n],

F (p) ≤
k∑

i=1

f(p′′
i ) ≤ k · f

(
p′′
1 + · · · + p′′

k

k

)
= F (p∗).

Putting it all Together. By the combination of Observation 1 and Theorem 2,
setting p(Bi) = 1

max(k,n) for all Bi maximizes the expected number of isolations.
For k ≤ n, the expected number of isolations is

k

(
1 − 1

n

)n−1

≈ k

e
.

For k > n, the expected number of isolations is

k · n · p · (1 − p)n−1 = n ·
(

1 − 1
k

)n−1

= n ·
(

1 − 1
k

)k· n−1
k

≈ n · e− n
k ,

an expression that tends to n as k grows to infinity. More concretely, in the regime
k ≥ n, to achieve αn isolations in expectation, it suffices for the information to
make k ≈ n

ln(1/α) guesses. In particular, approximately 20n guesses suffice for
α = 0.95 and approximately 100n guesses suffice for α = 0.99.

Figure 1 provides an example of how the expected number of isolations grows
as a function of guesses k if n = 5 and P (Bi) is taken based on Observation 1
and Theorem 2.

Fig. 1. Expected number of isolations as a function of k. (n = 5).
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From Isolation to Identification 9

4 From Isolation to Identification

Isolation Alone is Insufficient for Identification. Theorem 1 shows that even prior
to any release (i.e., with R0 = ∅) an information receiver making just a single
isolation attempt would be successful in more than one in three trials. Likewise,
Observation 1 and Theorem 2 show that by making many guesses B1, . . . , Bk,
the information receiver can drive the expected number of isolations up to n as k
grows. By Postulate 1, none of these cases amount to identification. Some other
criterion beyond mere isolation is needed.
A Baseline. We again look to Theorems 1 and 2. They characterize the optimum
rate of isolation achievable without any data-specific knowledge, and what strate-
gies achieve that optimum. Those results therefore describe a baseline against
which an information receiver’s attempts at isolation may be measured. If the
receiver can significantly outperform the baseline, it is indicative of some non-
trivial disclosure.

We are now guided by Postulate 2. A guess B that isolates in X
describes an individual record in the dataset (e.g., SEX=male, ZIP=02138,
DOB=07/31/1945). Such a description may enable identification if it is spe-
cific enough to uniquely distinguish that the corresponding individual in the
underlying population.

Isolation may enable identification when B is specific enough to uniquely
distinguish an individual in a population, and also isolates in X better than
the baseline chance. Two parameters are important: P (B), the probability mass
of B in the prior distribution; and Pr[HX(B) = 1 | R], the probability that
B isolates in X conditioned on the the release R. Smaller P (B) and larger
Pr[HX(B) = 1 | R] are stronger evidence that identification may be possible.

Consider, e.g., a simple setting where a population X∗ of N individuals is
drawn i.i.d. from P , and a subset X of size n = rN is sampled uniformly at
random, where 0 < r + 1. The information receiver sees a release R derived
from X and outputs a single guess B. The receiver’s goal is that B should both
isolate in X and uniquely distinguish an individual in the population X∗. If B
isolates in X, then it uniquely distinguishes in X∗ if no element of X∗ \ X is
in B. Taking P (B) ≤ 1

100N = r
100n , we get that B uniquely distinguishes in X∗

with probability

(1 − P (B))N−n = (1 − P (B))(1−r)N ≥
(

1 − 1
100N

)100N · 1−r
100

≈ e− (1−r)
100 > 0.99.

On the other hand, by Remark 3, the baseline chance that the information
receiver produces such a B that also isolates in X after only receiving the empty
release R0 is:

piso(B) = Pr[HX(B) = 1 | R0] " r

100
+ 0.01.

In this example, the release R may enable identification if—with probability
much greater than 0.01—the information receiver produces a guess B such that
both P (B) ≤ 1

100N and B isolates in X.
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10 G. D’Acquisto et al.

We quantify the improvement in the probability of isolation conditioned on
the release R using a quantity we call isolation gain.

Definition 3 (isolation gain). Let B ⊆ D. Consider two datasets X,X′ ∼ Pn

and let R be a release derived from X. The isolation gain for B is defined as:

G(B) =
Pr[HX(B) = 1 | R]

Pr[HX′(B) = 1]
.

Rephrasing the preceding discussion, the information receiver wants to make a
guess B with a high isolation gain. Namely, the receiver attempts to maximize
the numerator—the probability that B isolates given R—while minimizing the
denominator, which for P (B) < 1

n is equivalent to minimizing P (B).11

4.1 How an Information Release may Enable Identification

We now consider how the information receiver might use a release R about a
dataset X of size n in an attempt to identify an individual in a population of N -
n. Throughout this section, we view a (noiseless) data release R as consisting of a
collection of pairs R = {(Ai,mi)}, each pair specifying a subdomain Ai ⊆ D and
the count mi = HX(Ai). In this subsection, we assume that the Ai are chosen
independently of X (the worst case for the information receiver). We consider an
information receiver who produces a single guess B seeking to minimize P (B)
while maximizing the probability of isolation Pr[HX(B) = 1 | R].

We use a simple observation: if Bi isolates a single record among the mi

records in Ai, then B = Bi ∩ Ai isolates a single record in X. To find such a
Bi, we adapt the strategies analyzed in Sect. 3. In that section, we analyzed the
optimum probability of isolation assuming only that X ∼ Pn, for any P and n.
For any i, let Xi = {x ∈ X : x ∈ Ai} be those elements of X contained in Ai, and
Pi be the data distribution conditioned on x ∈ Ai. The posterior distribution
of Xi conditioned on the release R is mi i.i.d. samples from Pi. (This uses the
assumption that Ai is independent of X.) Theorem 1 implies that Bi satisfying
Pi(Bi) = P (Bi|Ai) = 1

mi
will maximize the probability of isolating in Xi, as

desired. The isolation gain for B = Bi ∩ Ai is

G(B) =
mi · 1

mi
· (1 − 1

mi
)mi−1

n · P (B) · (1 − P (B))n−1
. (2)

Whether the above strategy is good depends on which sets Ai are in the
release R. We analyze three examples based on the value of P (Ai) relative to 1

n .
If P (Ai) + 1

n , the attack is very successful: G(B) - 1. Furthermore, if
P (Ai) + 1

N , then the release may enable identification. To see why, observe
that many Ai will contain exactly 1 record: mi = 1. Take B = Ai for any such

11 We exclude P (B) ≥ 1
n , as the chance that B uniquely distinguishes an individual in a

population of size N = n/r in extremely small. Namely, (1−P (B))N−n ≤ e−(1−r)/r.
Taking r = 0.01, say, the probability is about 10−43.
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From Isolation to Identification 11

Ai. The numerator of G is Pr[HX(B) = 1] = Pr[mi = 1] = 1. By Remark 3, the
denominator of G is Pr[HX′(B) = 1] ≈ n · P (B) + 1. If P (B) = P (Ai) + 1

N ,
then B uniquely distinguishes the isolated individual in the population with high
probability.

If P (Ai) = 1
n , the attack slightly beats the baseline: G(B) ! ln(n)

e . By a
standard balls-in-bins analysis, there exists i such that mi ≈ ln(n) with high
probability. For this i, we take B = Bi ∩ Ai, yielding P (B) ≈ 1

n ln(n) . The
numerator of G is ≈ 1

e . The denominator is < n · P (B) ≈ 1
ln(n) .

If P (Ai) - 1
n , the attack doesn’t beat the baseline: G ≈ 1 in expectation. In

this case, mi - 1 with high probability, and thus then numerator of Eq. (2) is
≈ 1

e . Next, observe that

E[P (B)] = E
[
P (Ai)

mi

]
= E

[
E(HX(Ai))
n · HX(Ai)

]
= 1.

For P (B) ≈ E[P (B)],12 the denominator of Eq. (2) is also ≈ 1
e .

4.2 Examples from the Re-identification Literature

We briefly consider few types of releases R which capture re-identification attacks
from prior work.

Microdata Releases. In a typical microdata release R, the subdomain Ai describes
the attributes of record xi ∈ X, possibly with some attributes generalized or
redacted. Typically, the attributes are very rich, hence P (Ai) + 1

n . As described
in the previous section, the information receiver can achieve a high isolation gain
by taking B = Ai. Whether B uniquely distinguishes the isolated individual in
the population depends on details of the release. But, since it does not take
many attributes to uniquely distinguish somebody in the population [15], it is
likely that, for a rich data domain, P (B) < 1

100N .
A well-known example is the “Unique in the Crowd” study by De Montjoye

et al. [7] The Ai consisted of many time-location data points for each of 1.5M
people. The study showed that taking B ⊇ Ai to contain just four of these
points sufficed to isolate for 95% of the rows i. But no evidence was given that
P (B) was small enough to uniquely distinguish an individual in the underlying
population [14].

To get beyond mere isolation, Rocher et al. directly estimated the probability
of population uniqueness for microdata releases [12]. Like us, they observed
that the probability that B uniquely distinguishes the isolated individual in the
population is at least (1−P (B))N−1. They showed that for real-world datasets,
an information receiver can empirically estimate (1 − P (B))N−1 to within a few
percent by using sample of the population to learn the distribution P .13 Using

12 Accounting for the variance of P (B) yields only an insignificant improvement.
13 E.g., for Governor Weld’s attributes used by Sweeney, they estimated (1 −

P (B))N−1 ≈ 0.58.
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this estimate, an information receiver can choose B such that (1 − P (B))N−1 ≥
0.95, say, which implies that P (B) + 1

N .
Other re-identification studies on microdata releases include Sweeney’s re-

identification of Governor Weld [15] (see below) and Narayanan and Shmatikov’s
re-identification using the Netflix Prize Dataset [11].

k-anonymity. A k-anonymous data release contains $-many counts (Ai,mi) sub-
ject to the constraint that mi ≥ k. The parameter k > 1 is a small constant
(e.g., k = 5, 10). For simplicity, let us assume that mi = k for all i.

Cohen and Nissim analyze an the success of the following information receiver
for arbitrary k-anonymization algorithms [5]. Guess B ⊆ Ai arbitrary sub-
ject to P (B|Ai) = 1

k , for any i. They show that so long as the data distri-
bution has a moderate amount of entropy, B isolates with probability about
(1 − 1

k )k−1 > 1
e , regardless of the k-anonymization algorithm.14 It remains to

analyze P (B) = P (Ai)
k . As for the microdata release, how small P (Ai) is depends

on the k-anonymization algorithm and data distribution. Most k-anonymization
algorithms are designed to preserve as much richness of the input dataset X as
possible, i.e., minimizing P (Ai). For rich-enough data, it is possible to provide
k-anonymity while also guaranteeing that P (Ai) < 1

100N with high probability.
Cohen gives a much more effective strategy called downcoding, but which

requires some assumptions on the k-anonymization algorithm and data distribu-
tion [4]. The core observation is that, if the k-anonymization algorithm preserves
as much of X as possible, the sets Ai must depend on the data. Cohen shows that
for some data distributions, the Ai enable the information receiver to recover
a very detailed description Bj of some fraction of the rows xj ∈ X (≥ 3% of
the rows for k ≤ 15). These Bj isolate in X, and P (Bj) < 1

100N as long as X
contains at least 3 ln(100N) attributes.

When Membership in X is Known. Often, X is not a random sample of the
population. Rather, membership in X is correlated with some attribute of the
data. This extra information can help the information receiver turn isolation into
identification by excluding from B individuals not in X. For example, Cohen’s re-
identification of EdX students required only a few attributes about the students.
Cohen was able to exclude all individuals not in the EdX release using the cer-
tificates of completion posted by many EdX students on their LinkedIn profiles,
thereby turning isolation into identification [4]. As another example, Sweeney’s
re-identification of Governor Weld made use of the fact that the dataset con-
tained the hospital records for all state employees [15].

Overlapping Contingency Tables. An example that doesn’t fit neatly into the
above comes from Israel’s Central Bureau of Statistics.15 Very roughly, the
release included a count m for subdomains A specified by any choice of up
to 5 attributes. For example, there was exactly 1 male widower veteran with
14 The proof of this fact is somewhat nuanced, as Ai can depend arbitrarily on the

dataset X.
15 See https://www.slideserve.com/ordell/razi-mukatren-golan-salman, and https://

archive.is/W20kx.
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no children among the survey respondents. Alone, these subdomains had prob-
ability P (A) ≈ 1

n . By the analysis in the previous section, identification would
seem impossible. But if only four attributes were needed to isolate a record—as
for the widower above—it is easy to reconstruct the record entirely. For every
additional attribute, exactly one possible value will be non-zero. In this way, the
information receiver can bootstrap many isolations into possible identifications.
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“DASS: Co-design of law and computer science for privacy in sociotechnical software
systems” and a gift to Georgetown University. Work completed while K.N. visited
Bocconi University, Milan.

A Isolating with a Partial Knowledge of P

The analysis in Sects. 3.1 and 3.2 assumed that the information receiver has
perfect knowledge of the underlying probability measure P (but not X sampled
from P ). We now discuss what the receiver may do when they do not know P
in full.

Observation 1 and Theorem 2 teach that all the information receiver needs
is a partition of the data space into sets of probability weight p∗ = 1

max(n,k)

and Remark 3 suggests that it suffices that the partition is close to the optimal
weight for the information receiver to succeed in isolating. We now develop these
ideas.

Let C = {Ci}"
i=1 be a partition of D where $ = max(n, k). The information

receiver may choose the partition C heuristically in combination with their partial
knowledge about P and the data domain D. For example, C may partition D into
high-dimensional rectangles, each described as the conjunction of one or more
attribute ranges (e.g., all combinations of 5-year Age by Sex by City). Denote
by pi = P (Ci) the probability of an individual falling into Ci. We show that
if p = (p1, . . . , p") is close close enough to p∗ = (1

" , . . . , 1
" ) then (even without

knowing p1, . . . , p") the information receiver succeeds in isolating.
As C is a partition of the data domain D we have that

∑"
i=1 pi = 1. Hence,

if we pick a partition element at random, then, in expectation, its probability
weight would be exactly p∗ = 1

" :

E
i∼U!

[pi] =
"∑

j=1

Pr
i∼U!

[i = j] · pj =
1
$

"∑

j=1

pj =
1
$
,

where we use i ∼ U" to denote that the expectancy is over choosing an element
of the partition i ∈ {1, . . . , $} uniformly at random.

An important parameter of the partition is its standard deviation σ:

σ2 := Var
i∼U!

[pi] = E
i∼U!

[
p2

i

]
−
(

E
i∼U!

[pi]
)2

=
1
$

"∑

i=1

p2
i − 1

$2
=

1
$

· ‖p‖2
2 − 1

$2
.
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If the standard deviation σ is small compared to 1
" , say σ ≤ c

" for c + 1, then
many of the elements of the partition have weight pi ≈ 1

" . More precisely, by
Chebyshev’s inequality16 we have:

Pr
[
pi %∈

[
1
2$

,
3
2$

]]
= Pr

[
|p(Ci) − E[p(Ci)]| >

1
2$

]
< 4c2.

Hence, if the information receiver samples guesses B1, . . . , Bk from the partition
C without replacement, then in expectation at least (1 − 4c2)k of them would
satisfy p(Bi) ∈

[
1
2" ,

3
2"

]
. Using Eq. 1 each of these guesses would result in isolation

probability piso(Bi) ≥ n ·min( 1
2" ·(1− 1

2" )
n−1, 3

2" ·(1− 3
2" )

n−1), and in expectation
the number of isolating guesses would be at least

(1 − 4c2) · kn

2$
· min

(
(1 − 1

2$
)n−1, 3 · (1 − 3

2$
)n−1

)
.

As an example, if c = 1
4 and k = n (hence $ = k = n) we get that in expectation

the number successful isolations is at least
(

1 − 4 ·
(

1
4

)2
)

· n2

2n
· min

((
1 − 1

2n

)n−1

, 3 ·
(

1 − 3
2n

)n−1
)

≈ 3n

8
· min

(
e−1/2, 3e−3/2

)
≈ 0.23n.

I.e., in expectation almost a quarter of the guesses would consist successful iso-
lations in spite of Bi not being chosen optimally.

Remark 6. Cohen and Nissim [5] used hashing to create a structure that is equiv-
alent to a partition C where pi is very close to 1

" (assuming P has sufficient min-
entropy). The main qualitative difference between the hashing approach and the
one described in this work is that hashing destroys the structure of the data
domain and makes it harder for the information receiver to make effective use
of isolation (e.g., as a step towards a linkage attack) whereas in the approach
described herein the information receiver may choose partitions C that are more
suitable for their purposes.
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