
Control, Confidentiality, and the Right to be Forgotten∗

Aloni Cohen
aloni@uchicago.edu
University of Chicago

Adam Smith
ads22@bu.edu

Boston University

Marika Swanberg
marikas@bu.edu
Boston University

Prashant Nalini Vasudevan
prashant@comp.nus.edu.sg

National University of Singapore

ABSTRACT
Recent digital rights frameworks give users the right to delete their
data from systems that store and process their personal information
(e.g., the “right to be forgotten” in the GDPR).

How should deletion be formalized in complex systems that in-
teract with many users and store derivative information? We argue
that prior approaches fall short. Definitions of machine unlearning
[6] are too narrowly scoped and do not apply to general interactive
settings. The natural approach of deletion-as-confidentiality [15]
is too restrictive: by requiring secrecy of deleted data, it rules out
social functionalities.

We propose a new formalism: deletion-as-control. It allows users’
data to be freely used before deletion, while also imposing a mean-
ingful requirement after deletion—thereby giving users more con-
trol.

Deletion-as-control provides new ways of achieving deletion in
diverse settings. We apply it to social functionalities, and give a
new unified view of various machine unlearning definitions from
the literature. This is done by way of a new adaptive generalization
of history independence.

Deletion-as-control also provides a new approach to the goal of
machine unlearning, that is, to maintaining a model while honoring
users’ deletion requests. We show that publishing a sequence of up-
dated models that are differentially private under continual release
satisfies deletion-as-control. The accuracy of such an algorithm
does not depend on the number of deleted points, in contrast to the
machine unlearning literature.

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy protections; •
Social and professional topics→ Privacy policies.

KEYWORDS
deletion, machine unlearning, history independence, differential
privacy

∗A full version of this extended abstract appears on arXiv [10].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3616585

ACM Reference Format:
Aloni Cohen, Adam Smith, Marika Swanberg, and Prashant Nalini Vasude-
van. 2023. Control, Confidentiality, and the Right to be Forgotten. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3616585

1 INTRODUCTION
The long-term storage of modern data collection carries serious
risks, including often-surprising disclosures [7, 9, 14, 26, 33], manip-
ulation, and epistemic bubbles. The permanence of our digital foot-
prints can also chill expression, with every word weighed against
the risk of out-of-context blowback in the future.

Data protection laws around the world have begun to challenge
this permanence. The EU’s General Data Protection Regulation
provides an individual data subject the right to request “the erasure
of personal data concerning him or her” and delineates when a data
controller must oblige. California followed suit in 2020, and similar
rights take effect in Virginia, Colorado, Connecticut, and Utah in
2023 [31].

In the modern data ecosystem, however, it is not easy to artic-
ulate what constitutes the “erasure” of personal data. Data is not
merely stored in databases—it is used to train machine learning
models, compute and publish statistics, and drive decisions. Such
complexity and nuance challenges simplistic thinking about erasure,
and the sheer number of ways data are used precludes case-by-case
reasoning about erasure compliance.

Giving users more control over data is today a central policy goal.
Decades of cryptography has given us good definitional tools for
reasoning about non-disclosure of data—enabling the development
of technical solutions, informing policy decisions, and influencing
practice. But we lack similar tools for reasoning about control over
data and, in particular, deletion. While there has been a flurry of
recent work on so-called machine unlearning [5, 6, 16, 23, 36, 39,
. . .], often directly motivated by legal compliance, there remain
basic gaps in our understanding.

This paper sheds light on what data deletion means in complex
data processing scenarios, and how to achieve it. We provide a for-
mulation that unifies and generalizes previous technical approaches
that only partially answer this question. Though we make no at-
tempt to strictly adhere to any specific legal right to erasure, we
aim to incorporate more of its contours than prior technical work
on erasure.

Our new formulation, called deletion-as-control, requires that
after an individual Alice requests erasure, the data controller’s
future behavior and internal state should not depend on Alice’s

https://doi.org/10.1145/3576915.3616585
https://doi.org/10.1145/3576915.3616585

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

data except insofar as that data has already affected other parties in
the world. In this way, Alice’s autonomy need not require secrecy;
she has a say about how her data is used regardless of past or future
disclosure.

Our definitionmeaningfully captures a variety of data controllers,
including ones facilitating social interactions and maintaining accu-
rate predictive models. In contrast, prior approaches yield a patch-
work of, at times, contradictory and counterintuitive interpretations
of erasure.

1.1 Touchstone Examples
In order to understand our and prior approaches to data deletion, it
is helpful to have in mind a few concrete examples of functionalities
that separate our approaches from prior ones. We describe four
touchstone functionalities, then briefly discuss how they relate to
prior approaches and our new notion.

Private Cloud Storage. Users can upload files for cloud storage
and future download. Only the originating user may download a
file and the files are never used in any other way. The existence
of files is only ever made known to the originating user, and the
controller publishes no other information.
Public Bulletin Board. Users can submit posts to the public bul-
letin board. The bulletin board simply displays all user posts cur-
rently in the controller’s internal storage, with no other function-
alities (e.g. responding, messaging, etc.).
Batch Machine Learning. Users contribute data during some
collection period. At the end of the period, the data controller
trains a predictive model on the resulting dataset. The data con-
troller then publishes the model.
Public Directory + Usage Statistics. Users upload their name
and phone number to be listed in a directory. The data controller
allows anybody to search for a listing in the directory, and each
week reports a count of the number of distinct users that have
looked up a phone number so far. (Other statistics are possible
too—the weekly count of new users, say.)

The touchstone examples and prior approaches. Figure 1 summarizes
how the touchstone functionalities fare under deletion-as-control
and under three prior approaches to defining deletion: deletion-as-
confidentiality, machine unlearning, and simulatable deletion (Sec-
tion 1.4).1 Together, the touchstone functionalities illustrate that
prior approaches constitute an inconsistent patchwork, each falling
short on at least two of the examples.

Deletion-as-confidentiality [15] is over-restrictive. Briefly, it re-
quires that third parties cannot distinguish whether a data subject
Alice requested erasure from the controller or simply never inter-
acted with the controller in the first place. This implies, among other
things, that Alice’s data is kept confidential from all other parties
even if Alice never requests its erasure. This confidentiality-style
approach is well-suited for Private Cloud Storage, but deletion-as-
confidentiality precludes inherently social functionalities, like the
Bulletin Board and Directory. No controller implementing these

1We introduce the terms deletion-as-confidentiality and simulatable deletion for the
definitions of [15] and [17], respectively, to more clearly distinguish them from each
other and from deletion-as-control. [15] use the term deletion-compliance; [17] use
strong deletion-compliance and weak deletion-compliance, respectively.

functionalities could ever satisfy deletion-as-confidentiality. Why
would Alice post messages if they could never be made public?

On the other hand, machine unlearning—even in its strongest
incarnation, due to Gupta et al. [23]—is too narrowly scoped. It is
specialized to the setting of machine learning and does not consider
general interactive functionalities. The definition is not applicable
to the Cloud Storage, Bulletin Board, and Directory functionalities.
Definitions from the machine unlearning literature are meaningful
for the Batch Machine Learning functionality, where they corre-
spond to versions of history independence.

Even where multiple definitions are meaningful, they may im-
pose different requirements. For example, both deletion-as-confidentiality
and deletion-as-control admit implementations of Batch Machine
Learning that are persistent in that the published models never need
to be updated. On the other hand, history independence requires
that any useful model be updated after enough deletion requests.

The touchstone examples and deletion-as-control. We show that each
of the touchstones can be implemented in a manner that satisfies
our new notion, deletion-as-control.
Private Cloud Storage. To remove a user, the controller deletes
all the user’s files from its internal storage. Such a controller satis-
fies deletion-as-control if its data structures are history independent
(Corollary 3.8).
Public Bulletin Board. To remove a user, the controller deletes
all of the user’s posts from its internal storage and, as a result,
from the public-facing bulletin board. As with cloud storage, such
a controller satisfies deletion-as-control if its data structures are
history independent (Corollary 3.8).
Batch Machine Learning. Deletion-as-control is achieved if the
dataset is deleted after training and training is done with differ-
ential privacy, e.g., using DP-SGD [3] (Corollary 5.2). To remove
a user, the controller does nothing—it simply ignores deletion re-
quests. The resulting deletion guarantee is parameterized by the
privacy parameters 𝜖 and 𝛿 .
Public Directory + Usage Statistics. Deletion-as-control can be
achieved by combining differential privacy and history indepen-
dence (Corollary 6.5). The statistics are computed using a mech-
anism that satisfies a stringent form of DP—pan-privacy under
continual release—while the public directly is implemented us-
ing a history independent data structure. To remove a user, the
controller deletes their listing from the public directory and its
associated data structures, but leaves the data structures for the
DP statistics unaltered.

1.2 Contributions
Defining deletion-as-control. Our primary contribution is a formal-
ization of deletion-as-control, an important step towards providing
individuals greater control over the use of personal data. The new
notion applies to general data controllers and interaction patterns
among parties, building on the modeling of [15]. As described be-
low, it unifies existing approaches within a coherent framework
and captures all the touchstone examples of Section 1.1.

The goal embodied by deletion-as-control is not so much to
hide data from others as to exercise control over how the data is
used. Until Alice requests erasure, deletion-as-control should not
limit the controller’s usage of her data. But after erasure, the data

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Private Cloud Storage Public Bulletin Board Batch Machine Learning Public Directory +
Usage Stats

Deletion-as-Confidentiality [15] ✓ ⊤ ✓ ⊤

Machine unlearning [23, among others] ✗ ✗ ✓ ✗

Simulatable deletion [17] ✓ ⊥ ⊥ ⊥

Deletion-as-control (this work) ✓ (Cor. 3.8) ✓ (Cor. 3.8) ✓ (Cor. 5.2) ✓ (Cor. 6.5)

✓: Definition is satisfied by implementations with meaningful deletion guarantees.
⊥: Definition is under-restrictive: allows vacuous implementations with no meaningful deletion of any kind.
⊤: Definition is over-restrictive: no implementation of the functionality satisfies the definition.
✗: Definition does not apply to the functionality.

Figure 1: Application of deletion definitions to touchstone functionalities.

controller’s future behavior and internal state should not depend
on Alice’s data except insofar as that data has already affected other
parties in the world. In this way, Alice’s autonomy need not imply
secrecy; she has a say about how her data is used regardless of past
or future disclosure.

Our approach provides new ways of achieving meaningful dele-
tion in diverse settings.

Capturing social functionalities via history independence. Deletion-
as-control applies to a wide range of controllers that provide “social”
functionalities where prior approaches fall flat (e.g., the Public Bul-
letin Board touchstone). Along the way, we give a new unified view
of the various machine unlearning definitions from the literature.

Both flow from a theorem roughly stating that deletion-as-control
is implied by adaptive history independence, a generalization of the
cryptographic notion of history independence [29, 30] that we intro-
duce. An implementation of a data structure is history independent
if its memory representation reveals nothing more than the logical
state of the data structure. That history independence is related to
deletion is intuitive, and appears in [15, 17]. Machine unlearning
imposes a similar requirement in the specific context of machine
learning. Oversimplifying, a learned model (akin to the memory
representation) must reveal nothing more than a model retrained
from scratch (akin to the logical state). We make these connections
precise.

New algorithms formachine learning via differential privacy. Deletion-
as-control provides a new approach for machine learning in the
face of modern data rights. Very roughly, differential privacy (DP)
provides deletion-as-control for free. Intuitively, if a person has (ap-
proximately) no impact on a trained model, mitigating that impact
is trivial. In particular, if using an adaptive pan-private algorithm
to maintain the model, it does not need to be updated in response
to deletion requests, unlike machine unlearning algorithms. For
the first time, this approach enables a meaningful deletion guaran-
tee while bounding the worst-case loss compared to deletion-free
learning.

Specifically, we describe two ways of compiling DP mechanisms
into controllers satisfying deletion-as-control. The first applies to
DP mechanisms that are run in a batch setting on a single, central-
ized dataset (e.g., the Batch Machine Learning touchstone). The
second applies to mechanisms satisfying an adaptive variant of pan-
privacy under continual release [8, 13, 25], including controllers that
periodically update a model on an ongoing basis. The compilation

Figure 2: Overview of the relationships between definitions
and the roles of specific example controllers. Each oval repre-
sents a definition, and each icon represents an implementa-
tion of a touchstone functionality satisfying the correspond-
ing definition. Oval containment corresponds to an impli-
cation between the definitions, though only roughly and
subject to technicalities that we do not attempt to capture in
this figure.

from differential privacy is by way of deletion-as-confidentiality
Garg et al. [15], which we prove implies deletion-as-control.

We combine this result with existing algorithms for private learn-
ing under continual release [27] to obtain new controllers that
maintain a model with accuracy essentially identical to that of a
model trained on the entire set of added records.

Capturing complexmechanisms via composition. We show that deletion-
as-control captures more functionalities than those collectively cap-
tured by history independence, differential privacy, and deletion-as-
confidentiality. Specifically, we show how to implement the Public
Directory + Usage Statistics touchstone, a functionality that cannot
satisfy any of the above three properties. To do so, we prove that
deletion-as-control enjoys a limited form of parallel composition.

1.3 Defining deletion-as-control
We define deletion-as-control in a way that allows arbitrary use of
a person’s data before deletion, but not after. The challenge is to
provide meaningful privacy guarantees despite this feature, even in
a general setting with an adaptive and randomized data controller,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

data subject (Alice), and an environment (representing all parties
other than the data controller and Alice).

Our proposal is that after deletion, the data controller should
be able to produce a plausible alternate explanation for its current
state without appealing to Alice’s participation. More specifically,
the state of the controller after deletion can be plausibly attributed
to the interaction between the controller and the environment alone.
By this we mean that the state is about as likely—with probability
taken over the controller’s random coins—in the real world as in the
hypothetical ‘ideal’ world where the environment’s messages to the
controller are unchanged but where Alice does not interact with the
controller whatsoever. The result is that, after Alice’s deletion, the
controller’s subsequent states depend on the interaction with Alice
only insofar as that interaction affected other parties’ interactions
with the controller.

Importantly, we only require that the controller’s state is plausi-
ble in the ideal world given the messages sent by the environment.
We do not require the environment’s messages themselves to be plausi-
ble in the ideal world. For example, suppose that on a public bulletin
board, Bob simply copies and reposts Alice’s posts. Bob’s messages
in the ideal world would still contain the content of Alice’s posts,
even though Alice is completely absent in the hypothetical ideal
world. This is unavoidable—we want to allow the controller and the
environment to use the subject’s data arbitrarily before deletion. So
the environment’s queries may depend on the data subject’s inputs,
directly or indirectly.

In a bit more detail, our definition compares real and ideal worlds
defined in a non-standard way.2 The real world execution, denoted
⟨C, E, Y⟩, involves three parties: a data controller C, a special data
subject Y, and an environment E representing all other parties. (The
notation ⟨· · ·⟩ denotes the transcript of an execution between the
parties listed.) The execution ends after Y requests deletion and
C processes the request. The real execution specifies (i) C’s state
stateC, (ii) the queries ®qE sent by E to C, and (iii) the randomness
𝑅C used by C. The ideal world execution, denoted ⟨C(𝑅′C),D(®qE)⟩,
involves the same controller C and a dummy environment D that
simply replays the queries ®qE. The controller’s ideal world random-
ness 𝑅′C is sampled by a simulator Sim(®qE, 𝑅C, stateC). The ideal
execution specifies (i) C’s ideal state state′C, and (ii) the simulated
randomness 𝑅′C used by C.

Definition 1.1 ((𝜖, 𝛿)-deletion-as-Control (simplified)). Given C, E,
Y, and Sim, consider the following experiment. Sample 𝑅C ← {0, 1}N;
run the real execution (®qE, stateC) ← ⟨C(𝑅C), 𝐸,Y⟩; sample 𝑅′C ←
Sim(®qE, 𝑅C, stateC); and run the ideal execution (®q′E, state

′
C) ←

⟨C(𝑅′C),D(®qE)⟩.
We say a controller C is (𝜖, 𝛿)-deletion-as-control compliant if

there exists Sim such that for all E and Y: (i) 𝑅′C
𝜖,𝛿≈ 𝑅C; (ii) state′C =

stateC with probability at least 1 − 𝛿 .

The notation
𝜖,𝛿≈ denotes approximate indistinguishability pa-

rameterized by 𝜖 and 𝛿 (as in the definition of differential privacy).
We give a complete version of Definition 1.1 in Section 2.

2The non-real world is more ‘hypothetical’ or ‘counter-factual’ than ‘ideal.’ Regardless,
we use the term ‘ideal world’ for continuity with [15] and decades of cryptography.

1.4 Prior Work
We give a brief discussion of prior definitions of deletion. Machine
unlearning and deletion-as-confidentiality are discussed in detail
in Sections 3.4 and 4, respectively.

Deletion-as-confidentiality. Garg et al. [15] define deletion-as-confidentiality.3
It requires that the deleted data subject Alice leaves (approximately)
no trace: the whole view of the environment along with the state of
the controller after deletion should be as if Alice never existed. As
a result, no third party may ever learn of Alice’s presence — even
if she never requests deletion. The strength of this definition is its
strong, intuitive, interpretable guarantee.

But deletion-as-confidentiality is too restrictive (Figure 1). The
stringent indistinguishability requirement precludes any function-
ality where users learn about each other. Implementations of the
Private Cloud Storage and Batch Machine Learning functionalities
can satisfy deletion-as-confidentiality, using history independence
(cf. Section 3). But the Bulletin Board and Directory are ruled out.
If Bob ever looks up Alice’s messages, the confidentiality required
by the definition is impossible.

Simulatable deletion. Godin and Lamontagne [17] introduce simu-
latable deletion as a relaxation of deletion-as-confidentiality, mo-
tivated by the observation that deletion-as-confidentiality rules
out social functionalities.4 Roughly, simulatable deletion requires
that after a data subject Alice is deleted, the resulting state of the
controller is simulatable given the environment’s view. This means
that any information about Alice that is present in the controller’s
state is already present in the view of other parties.

Simulatable deletion is too permissive. A controller may indefi-
nitely retain any information that has ever been shared with any
third party. For example, the Public Bulletin Board need not delete
Alice’s posts if they have ever been read!5 As a result, simulatable
deletion is essentially vacuous for functionalities where the con-
troller’s state need not be kept secret. The controller can simply
publish its state, making simulation trivial. Turning to our touch-
stone examples (Section 1.1), while simulatable deletion imposes a
meaningful requirement for the Private Cloud Storage functionality,
it allows implementations with no meaningful deletion of any kind
for the other three functionalities.

Machine unlearning. This recent line of work specializes the ques-
tion of deletion to the setting of machine learning [5, 6, 16, 23, 36, 39,
. . .]. Given a model ®𝜃 ← Learn(®𝑥) and a data point 𝑥∗ ∈ ®𝑥 , that
literature requires sampling a new model 𝜃 ′ ← Unlearn(®𝜃, 𝑥∗, ®𝑥)
approximately from the distribution Learn(®𝑥 \ {𝑥∗}) (i.e., approxi-
mating retraining from scratch). As we explain in Section 3.4, these
definitions correspond to versions of history independence.

3Deletion-as-confidentiality is called deletion-compliance in [15] and strong deletion-
compliance in [17].
4Simulatable deletion is called weak deletion-compliance in [17].
5Godin and Lamontagne [17] actually consider a version of the Bulletin Board func-
tionality for which simulatable deletion is meaningful. Crucially, their functionality
does not track whether a post has been read. Hence their controller must actually
delete Alice’s posts. But if the bulletin board keeps read receipts or actively pushes
new messages out to users, say, it would not have to delete these posts.

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

A drawback of machine unlearning is that it specialized to the
setting of machine learning. It does not apply to general data con-
trollers and interaction patterns among parties, including the Cloud
Storage, Bulletin Board, and Directory functionalities (Figure 1).

History independence-style definitions ofmachine unlearning do
impose a meaningful requirement for the Batch Machine Learning
functionality. In fact history independence is a conceptually stricter
requirement than deletion-as-control, setting aside many technical-
ities (Section 3.4). Differentially private (DP) learning illustrates the
difference. Roughly, DP learning provides deletion-as-control for
free; the resulting model can be published once and never updated.
In contrast, history independence require updating the model when
there are many deletions. To see why, consider ®𝑥 of size 𝑛 and sup-
pose all 𝑛 people request deletion. These definitions would require
the final model 𝜃∗ be essentially trivial—it should perform about
as well as a the model 𝜃0 trained on an empty dataset. With the
DP learner described above, 𝜃∗ performs just as well as the initial
model 𝜃 .

1.5 Paper Structure
In Section 2 we define deletion-as-control. In Section 3 we define
Adaptive History Independence and prove that it implies deletion-
as-control (Theorem 3.6). We also explain that definitions in the
machine unlearning literature can be seen as a special case of Adap-
tive History Independence. In Section 4 we show that deletion-as-
confidentiality is a strengthening of our definition (Theorem 4.3).
In Section 5, we relate differential privacy to our definition (Theo-
rem 5.3) and in the process we define adaptive pan-private in the
continual release model. Lastly, in Section 6 we prove a narrow com-
position result for our definition. Additional details and complete
proofs can be found in the full version of this paper [10].

2 DELETION-AS-CONTROL
We define deletion-as-control in a way that allows arbitrary use of a
person’s data before deletion, but not after. Under such a definition,
an adversary might completely learn the data before it is deleted,
and even make it available after it is deleted! The challenge is to
provide a meaningful guarantee despite this limitation, even in a
general setting with adaptive and randomized data controllers, data
subjects, and environments (representing all parties other than the
data controller and distinguished data subject).

2.1 (𝜖, 𝛿)-indistinguishability
We consider a notion of similarity of distributions closely related
to differential privacy .

Definition 2.1. Given parameter 𝜖 ≥ 0 and 𝛿 ∈ [0, 1), we say
two probability distributions 𝑃 and 𝑄 on the same set X (with the
same 𝜎-algebra of events ΣX) are (𝜖, 𝛿)-indistinguishable and write
𝑃

𝜖,𝛿≈ 𝑄 if, for every event 𝐸 ∈ ΣX ,

𝑃 (𝐸) ≤ 𝑒𝜖𝑄 (𝐸) + 𝛿 and 𝑄 (𝐸) ≤ 𝑒𝜖𝑃 (𝐸) + 𝛿 .

Slightly overloading this notation, we say two random variables 𝑋
and 𝑌 taking values in the same measurable space (X, ΣX) are (𝜖, 𝛿)-
indistinguishable, denoted 𝑋

𝜖,𝛿≈ 𝑌 if, for every event 𝐸 ∈ ΣX ,

Pr[𝑋 ∈ 𝐸] ≤ 𝑒𝜖 Pr[𝑌 ∈ 𝐸] + 𝛿 and,

Pr[𝑌 ∈ 𝐸] ≤ 𝑒𝜖 Pr[𝑋 ∈ 𝐸] + 𝛿 .

Because algorithms in our model run in unbounded time, their
(countably infinite) random tapes belong to an uncountably infinite
set. This means that not all sets of random tapes have well-defined
probability. The 𝜎-algebra ΣX captures the set of events 𝐸 for which
𝑃 (𝐸) and 𝑄 (𝐸) are defined. This issue does not affect most proofs
and definitions; we only make the 𝜎-algebra of events explicit when
necessary.

In our case, the set X of random tapes for a single machine is
{0, 1}N. Any execution that terminates reads only a finite prefix
of the tape, and so the natural 𝜎-algebra ΣX is the smallest one
containing the sets 𝐸𝑤 =

{
𝑤 ∥𝑥 : 𝑥 ∈ {0, 1}N

}
for all 𝑤 ∈ {0, 1}∗,

where ∥ denotes string concatenation (that is, 𝐸𝑤 is the set of
infinite tapes with a particular finite prefix𝑤). ΣX contains every
event 𝐸 that depends on only finitely many bits of the tape. This is
the standard 𝜎-algebra for an infinite set of fair coin flips (see, e.g.,
[35]).

2.2 Parties and simplified execution model
Our definition uses the real/ideal cryptography, though not with a
typical indistinguishability criterion.

Complete details are in the full version [10].
The real world execution, denoted ⟨C, E, Y⟩, involves three (pos-

sibly randomized) parties: a data controller C, an environment E,
and a special data subject Y. The real interaction is arbitrary, limited
only by the execution model described below. Parties have authen-
ticated channels over which they may interact freely. While Y has
only a single channel to C, the environment has an unbounded
number of channels (representing unbounded additional parties).
While these channels are authenticated, the controller cannot dis-
tinguish the single channel to Y from those to E. The interaction
continues until the data subject Y requests deletion, ending after
the data controller C processes the request. We denote by stateC
the final state of the controller.

The ideal world execution, denoted ⟨C,D⟩, involves the inter-
action of the same controller C as well as a dummy environment
D. D takes as input the transcript from the real execution, denoted
𝜏 , and simply replays only E’s queries, denoted ®qE. If ®qE is empty,
then 𝐷 terminates without sending messages. Observe that C’s
responses and state in the ideal world are not fixed. They depend
on C’s ideal-world randomness, denoted 𝑅′C. Moreover, the ideal
interaction is defined relative to a particular instantiation of the
real world interaction. In particular, the queries ®qE may depend on
C’s real-world randomness, denoted 𝑅C.

The controller’s real-world randomness 𝑅C consists of infinitely-
many random bits sampled uniformly at random from {0, 1}N. We
denote this distributionU. In the ideal world, a simulator Sim takes
as input (®qE, 𝑅C, stateC) and generates C’s ideal-world randomness
𝑅′C. When we wish to emphasize the controller’s randomness in
the execution, we write ⟨C(𝑅C), E, Y⟩ and ⟨C(𝑅′C),D⟩.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

An execution involves parties sending messages to each other
until some termination condition is reached. Starting with E (real)
or D (ideal), parties get activated when they receive a message,
and deactivated when they send a message. Only a single party is
active at a time. Parties communicate over authenticated channels.
Because E represents all users besides the distinguished data subject
Y, E has many distinct channels to C. Importantly, authentication
allows parties to know on which channel a message was received,
but not which party (i.e., E or Y) is on the other end of that channel.
Each party is initialized with a uniform random tape which may
only be read once over the course of the whole execution. If a party
wishes to re-use bits from its randomness tape, it must store them
in its internal state.

The real execution ⟨C, E, Y⟩ ends when Y requests deletion from
C. The data subject’s delete message activates the controller, who
can then remove Y’s data. The ideal execution ⟨C(𝑅′C),D(®qE)⟩ ends
afterD sends its last query from ®qE toC. In both cases, the execution
ends after the final activation of C. We consider the controller’s
state at the end of the execution: stateC = C(®qE;𝑅C) in the real
world, and state′C = C(®qE;𝑅′C) in the ideal world. If an execution
never ends, the state is defined to be ⊥ and the transcript 𝜏 and its
subset ®qE are defined to be empty. For example, the real execution
ends if and only if Y requests deletion.

Remark 2.2 (Keeping time). In Section 5, we need a global clock.
Balancing modelling simplicity with generality, we allow the environ-
ment to control time. Specifically, we introduce a special query tick
that E can send to C thereby incrementing the clock. We do not allow
Y to query tick.

2.3 Defining Deletion-as-Control
We require that the internal state of the controller is about as likely
in the real world and the ideal world, where probability is taken over
C’s random coins. Let stateC and state′C be the internal states in the
real and ideal executions. Consider a random variable 𝑅′C which is
sampled uniformly conditioned on state′C = stateC in the ideal ex-
ecution where C uses randomness 𝑅′C. Informally, our definition re-

quires that the distributions of𝑅′C and𝑅C are close:𝑅′C
𝜖,𝛿≈ 𝑅C. We do

not require that the real and ideal executions are themselves (𝜖, 𝛿)-
indistinguishable. Instead, we require that the “explanations” in the
real and ideal executions are (𝜖, 𝛿)-indistinguishable—viewing the
controller’s randomness as the explanation of its state (relative to
the environment’s queries ®qE).

We extend this idea by considering ways of sampling 𝑅′C other
than the conditional distribution described above (which may not
always be defined). In general, we allow a simulator Sim to sample
𝑅′C as a function of the queries ®qE from E to C, the real-world
randomness 𝑅C, and the real-world state stateC. (Although we view
the simulator’s output as an infinite-length bit sequence, it actually

only needs to output a finite prefix.) We require that 𝑅′C
𝜖,𝛿≈ 𝑅C

and that state′C = stateC (or stateC = ⊥) except with probability
𝛿 . Sampling 𝑅′C conditioned on state′C = stateC is a useful default
simulation strategy that we use throughout the paper, but there are
sometimes much simpler ways to sample 𝑅′C.

Definition 2.3 (Deletion as control). Given a controller C, an en-
vironment E, a data subject Y and a simulator Sim, we consider the
following experiment:

• 𝑅C ←U (𝑅C is a uniform random tape)
• (𝜏, stateC) ← ⟨C(𝑅C), 𝐸,Y⟩, where ®qE ⊆ 𝜏 are the messages
from E to C.
• 𝑅′C ← Sim(®qE, 𝑅C, stateC)
• (𝜏 ′, state′C) ← ⟨C(𝑅

′
C),D(®qE)⟩.

We say a controller C is (𝜖, 𝛿)-deletion-as-control compliant if there
exists Sim such that for all E and Y and for 𝑅′C, 𝑅C sampled as above:

(1) 𝑅′C
𝜖,𝛿≈ 𝑅C (i.e., 𝑅C and 𝑅′C are similarly distributed),

and
(2) With probability at least 1 − 𝛿 , either

state′C = stateC or stateC = ⊥.
For a particular class of data subjects Y, we say a controller C is
(𝜖, 𝛿)-deletion-as-control compliant for Y if there exists Sim such
that the above holds for all E and for all Y ∈ Y.

Example 2.4 (XOR Controller). Consider a controller C⊕ which
maintains a 𝑘-bit state state ∈ {0, 1}𝑘 which is initialized uniformly
at random. Upon receiving a message 𝑥 ∈ {0, 1}𝑘 , C⊕ updates its
state state← state ⊕ 𝑥 , sending nothing in return. If it receives any
other message, including delete, it does nothing.

C⊕ satisfies (0, 0)-deletion-as-control. To see why, consider an ex-
ecution of the real world, which ends when the data subject sends
delete. At this point, state = 𝑅 ⊕ 𝑥Y ⊕ 𝑥E, where 𝑅 ∈ {0, 1}𝑘 is the
random initialization, 𝑥Y is the XOR of all messages 𝑥 sent by Y, and
𝑥E is the XOR of all messages 𝑥 sent by E. Let Sim compute 𝑥E from
the queries ®qE, and output 𝑅′ = state⊕𝑥E = 𝑅 ⊕𝑥Y. This satisfies the
definition: (1) 𝑅′ is uniformly distributed because 𝑥Y is independent
of 𝑅; (2) state′ = 𝑅′ ⊕ 𝑥E = state.

Definition 2.5 (Default simulator). The default simulator Sim∗

samples 𝑅′C as follows:

Sim(®qE, 𝑅C, stateC) :
Return 𝑅′C ∼ U

��
C(®qE;𝑅′)=stateC if such an 𝑅′ exists;

Otherwise, return 𝑅′C = 𝑅C .

The latter case can occur if Y never requests deletion but ®qE is finite,
for example. The conditional distribution is well defined, since if
there is an 𝑅′ which leads to C(®qE;𝑅′) = stateC, then the event
must occur with positive probability (because the execution of C
terminated, it uses only a finite prefix of 𝑅′). In the full version, we
prove that E and Y can be assumed to be deterministic without loss
of generality.

2.4 Discussion of the definition
On constraining C’s state. Our definition imposes a condition on
the internal state of the controller at a moment in time. Namely
that, immediately after the data subject Y is deleted, the actual
state of the controller stateC can be plausibly attributed to the
interaction between the controller and the environment alone. This
in turn provides a guarantee for anything the controller may do in
the future. Namely, if the real controller was replaced by the ideal

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Figure 3: The real (left) and ideal (right) executions. The communications with the controller C are meant to be “public API”
calls (e.g. accessing a public website, possibly using login credentials). Notice that the dummy environment in the ideal world
sends message ®qE,𝑖 regardless of what the previous responses were.

controller at the moment of Y’s deletion, the environment would
never know.

As an alternative, one might consider restricting future behav-
ior directly. We prefer to restrict the state as well. It is simpler
to describe—for instance, because there is a natural termination
condition. It is also future-proof: Any controller that satisfied the
future-behavior version but not the state version could choose to,
in the future, violate the guarantee by publishing the state at the
time of Y’s erasure. Imposing the condition on the state directly
makes it impossible for the future behavior of the real and ideal
controllers to deviate, rather than merely possible for them not to.

Differential privacy and deletion. As we will see later in this paper,
differential privacy (DP) can in some cases provide deletion-as-
control almost automatically, with no additional action required of
the data controller (Prop. 5.1 and Thm. 5.3). We believe that this
makes sense both from the point of view of what DP means and
the spirit of data protection regulations. When greater protection
is warranted, deletion-as-control should not serve as the sole basis
of analysis—nor should, perhaps, a right to erasure.

We’re guided by a simple intuition: If a single individual has
almost no influence on the result of data processing—the condi-
tion guaranteed by differential privacy—then nothing needs to be
done to remove that individual’s influence. This intuition closely
tracks some prior approaches to deletion. For instance, to show
that differentially private controllers satisfy deletion-as-control, we
actually show that they meet the much stricter requirements of
(approximate) deletion-as-confidentiality [15]. Some existing ma-
chine unlearning algorithms embody the same intuition, leaving
the trained model unaltered as long as the deleted data points had
no effect on the resulting model [16].6

The fact that DP can provide deletion-as-control fits well with
the data protection regulations, like GDPR and CCPA, that inspire
our work. Generally, these laws give individuals rights regarding
the processing of personal data relating to them.But these rights,
including the right to erasure, do not extend to data that have

6In contrast, Thudi et al. [38] argue that any definition where a data controller “do[es]
not need to do anything and can claim the unlearning is done”—including machine
unlearning definitions based on approximate history independence (Section 3.4)—is
“not well-defined”. We disagree.

been sufficiently anonymized.7 If one believes that in some cases,
DP anonymizes data for the purposes of GDPR, say, then in such
cases the data controller need not take any further action when
a data subject requests deletion. Whether DP releases constitute
personal data is explored in recent work bridging computer science
formalisms with legal analysis [2, 34]. Though the general question
remains unresolved, DP has been used to argue compliance with
privacy laws for several high-profile data releases, including by the
U.S. Census Bureau [40], Facebook [28], and Google [21].

Of course, DP is not always the answer. For example, if a model
was trained using data collected without proper consent, one might
require that no benefit derived from the ill-gotten data remains. The
Federal Trade Commission first adopted this type of algorithmic dis-
gorgement in a 2021 settlement with photo sharing app Everalbum
[37]. Differential privacy should not shield against such algorithmic
disgorgement.8

Deleting groups. Our definition provides a guarantee for an indi-
vidual data subject. What about groups? If many people request to
be deleted, then each individual person enjoys the individual-level
guarantee provided by deletion-as-control. But the group does not
necessarily enjoy an analogous group-level guarantee. For example,
the group-level deletion guarantee for the DP-based controllers in
Section 5 decays linearly with the group size. For large groups, the
group as a group doesn’t enjoy meaningful protection.

This seems unavoidable in contexts where (useful) statistics are
published once and not subsequently updated. It reflects a fun-
damental difference between deletion-as-control and the history
independence-style definitions in the machine unlearning literature,
discussed in Section 3.4. Suppose, for example, that a controller
trains a model 𝜃 using data from 𝑛 people. Then all 𝑛 people request
deletion, leaving the controller with a model 𝜃∗. History indepen-
dence would require that 𝜃∗ be essentially trivial: 𝜃∗ should perform

7Recital 26 states this explicitly: “The principles of data protection should therefore
not apply to anonymous information, namely information which does not relate to an
identified or identifiable natural person or to personal data rendered anonymous in
such a manner that the data subject is not or no longer identifiable.”
8Achille et al. [1] seem to disagree, writing: “In many ways, differential privacy (DP)
can be considered the ‘gold standard’ of model disgorgement”.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

about as well as a the model 𝜃0 trained on an empty dataset (Sec-
tion 3.4). On the other hand, the DP-based controllers in Section 5
allow 𝜃∗ to perform very well on the learning task.

An individual-level guarantee is in linewith data privacy laws. To
whit, the GDPR grants a right to erasure to “the data subject” who is
“[a] natural person” (Art. 4, 17). Even so, group-level deletionmay be
more appropriate in some settings (e.g., algorithmic disgorgement
discussed above). Exploring group deletion is an important direction
for future work.

Composition. Composition is an important property of good cryp-
tographic definitions. We do not yet have a complete picture of
how deletion-as-control composes. Theorem 6.4 states a limited
composition theorem that applies to parallel composition of two
controllers at least one of which satisfies a very strong guaran-
tee (specifically, it must implement a deterministic functionality
with perfect, as opposed to approximate, deletion-as-control). By
induction, this extends to the parallel composition of 𝑘 controllers
if all but one satisfy the strong guarantee. This can be used to rea-
son about complex interactive functionalities built from multiple
strongly history-independent data structures.

Proving more general composition for deletion-as-control is an
important question for future work. Addressing it seems challeng-
ing since it is closely related to still-open questions about composi-
tion for differential privacy. For example, it was shown only very
recently that differential privacy composes when mechanisms are
run concurrently with adaptively interleaved queries [41]. While
that result allows adaptive query ordering, the dataset itself is fixed
in advance. Deletion-as-control allows both queries and data to be
specified adaptively. Proving composition of deletion-as-control
seems only harder than the analogous question for differential
privacy.

Other limitations of our approach. We touch on two limitations of
our approach. First, there is no quantification of “effort.” The EU’s
right to be forgotten stems from Google v Costeja, where the Court
of Justice for the European Union ruled that a search engine may
be required to remove certain links from search results [11]. But
there are limits. Today, Google will only remove the result from
search queries related to the name of the person requesting deletion,
but not from other search queries [20]. This suggests a definition
in which results are hidden from a low-resource adversary who
only makes general searches, but not from an adversary with more
side information or time, carrying out more targeted or exhaustive
searches respectively. Modeling that sort of subtlety appears to
require fundamental changes from all existing approaches, ours
included.

Second, a failure of deletion as we formulate it doesn’t map
to an explicit attack on a system. It corresponds instead to a dis-
connect between the real execution and a counterfactual one in
which Alice’s data never existed but her effect on others’ data
remains. In this sense the definition is quite different from stan-
dard cryptographic ones, and it doesn’t obviously correspond to
an adversarial model nor combine well with other cryptographic
definitions. This is also true of the history-independence approach,
including the definitions in prior work on machine unlearning.
Deletion-as-confidentiality [15] does have a more straightforward

cryptographic flavor but, as we argue, its strict requirement is ill
suited for many application.

3 HISTORY INDEPENDENCE AND
DELETION-AS-CONTROL

History independence (HI) is concerned with the problem that the
memory representation of a data structure may reveal information
about the history of operations that were performed on it [24, 29, 30].
HI requires that the memory representation reveals nothing more
than the current logical state of the data structure.

In this section, we state the definition of (non-adaptive) history
independence (Section 3.1). We then define a more general notion
that allows for implementations that satisfy the conditions of HI
approximately and adaptively (Section 3.2). The generalization is
complex since we must explicitly model adaptivity in the inter-
actions between a data structure and those issuing queries to it.
Briefly, an adaptive adversary A interacting with the data struc-
ture produces two equivalent query sequences. Adaptive history
independence (AHI) requires that the joint distribution of A’s view
and the data structure’s state is the same under both sequences.
Approximate AHI requires these distributions to be (𝜖, 𝛿)-close.

We show that data controllers that satisfy approximate AHI also
satisfy our notion of deletion-as-control (Section 3.3) with the same
parameters. Finally, we show how existing definitions of machine
unlearning and the corresponding constructions are all (weakenings
of) our general notion of history independence (Section 3.4).

3.1 History independence
An abstract data type (ADT) is defined by a universe of operations
{op} and a mapping ADT : (op, 𝑠adt) ↦→ (𝑠′adt, outadt). We call
𝑠adt, 𝑠

′
adt ∈ {0, 1}

∗ the logical states before and after operation,
where 𝑠′adt is a deterministic function of 𝑠adt and op.We call outadt ∈
{0, 1}∗ ∪ {⊥} the logical output, which may be randomized. In
subsequent sections we will assume without loss of generality that
operations op(𝑖𝑑) are tagged by 𝑖𝑑 ∈ {0, 1}∗. We omit the tags
where possible to reduce clutter.

Given an initial logical state 𝑠0adt and a sequence of operations
𝜎 = (op1, op2, . . .), the ADT defines a sequence of logical states
(𝑠1adt, 𝑠

2
adt, . . .) and a sequence of outputs

−−→
out = (out1adt, out

2
adt, . . .)

by iterated application ofADT. We denote byADT(𝜎) .state the final
logical state that results from this iterated application. When no
initial state is specified, it is assumed to be the empty state.

Definition 3.1. We say two sequences of operations 𝜎 and 𝜎′ are log-

ically equivalent, denoted 𝜎
𝐿≡ 𝜎′, if ADT(𝜎).state = ADT(𝜎′).state.

Logical equivalence is an equivalence relation, and we denote by [𝜎]
a canonical sequence in the equivalence class of sequences {𝜎′ : 𝜎′ 𝐿≡
𝜎}.

An implementation (e.g., a computer program for a particular
architecture) is a possibly randomized mapping Impl : (op, 𝑠) ↦→
(𝑠′, out). We call 𝑠 the physical state and out the physical output.
Both may be randomized. Given an initial state and sequence of op-
erations, Impl defines a sequence of physical states and outputs by
iterated application. When no initial state is specified, it is assumed
to be the empty state.

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Definition 3.2 (History independence [30]). Impl is a weakly his-
tory independent implementation of ADT (WHI-implements ADT)
if

𝜎
𝐿≡ 𝜎′ =⇒ Impl(𝜎) .state ≡ Impl(𝜎′).state, (1)

where ≡ denotes equality of distributions. Impl is a strongly history
independent implementation of ADT (SHI-implements ADT) if for
all initial states 𝑠

𝜎
𝐿≡ 𝜎′ =⇒ Impl(𝜎, 𝑠) .state ≡ Impl(𝜎′, 𝑠) .state. (2)

One can obtain approximate, nonadaptive versions of history

independence by replacing ≡ with
𝜖,𝛿≈ in Definition 3.2. However,

because the sequence of queries is specified ahead of time, such a
definition’s guarantees are not meaningful in interactive settings.

3.1.1 Strongly History Independent Dictionaries. To illustrate his-
tory independence, consider the dictionary ADT, which models a
simple key-value store. Looking ahead, we will use history inde-
pendent dictionaries to build deletion-compliant controllers from
differential privacy. For our purposes, the keys will be party IDs 𝑖𝑑 ;
the values can be arbitrary. The ADT supports operations insert(𝑖𝑑),
delete(𝑖𝑑), get(𝑖𝑑), and set(𝑖𝑑, 𝑣𝑎𝑙𝑢𝑒), where set associates the key
corresponding to 𝑖𝑑 with 𝑣𝑎𝑙𝑢𝑒 , and get returns the most recently
set value. We assume that insert(𝑖𝑑) is equivalent to set(𝑖𝑑,⊤)
where ⊤ is a special default value.

Dictionaries are typically implemented as hash tables, but such
data structures are generally not history independent.

Storing a dictionary as a sorted list is inefficient—updates gen-
erally take time Ω(𝑛), where 𝑛 is the current number of keys—but
it enjoys strong history independence. Since we do not focus on
efficiency here, the reader may think of the sorted list as our default
implementation of a dictionary. 9

3.2 Adaptive History Independence (AHI)
The history independence literature gives no guarantees against
adaptively-chosen sequences of queries, because the two sequences
𝜎 and 𝜎′ are fixed before the implementation’s randomness is sam-
pled.

Inspired by [23], we extend the well-studied notion of history
independence to the adaptive setting, where the sequence 𝜎 of
operations is chosen adaptively by an algorithm interacting with
an implementation of an ADT.

We consider an interaction ⟨Impl(𝑅),A⟩ between an algorithm
A and the implementation Impl with random tape 𝑅 ∼ U.

In the interaction, A adaptively outputs an operation
op𝑖 ← A(op1, out1, . . . , op𝑖−1, out𝑖−1), and receives the output out𝑖
in return. The interaction defines a sequence of operations 𝜎 and
corresponding outputs−−→out. Eventually,A outputs a sequence𝜎∗ that
is logically equivalent to the sequence 𝜎 of operations performed so
far. Impl is executed on 𝜎∗ and alternate randomness 𝑅∗, resulting
in 𝑠∗ = Impl(𝜎∗;𝑅∗) .state. We consider two variants: 𝑅∗ = 𝑅, or
𝑅∗ ∼ U independent of 𝑅.

We consider the adversary’s ability to distinguish the real state
𝑠 = Impl(𝜎 ;𝑅).state and the logically equivalent state

9In fact, a strongly history independent hash table implementation with constant
expected-time operations was described by Blelloch and Golovin [4].

𝑠∗ = Impl(𝜎∗;𝑅∗) .state, given its view 𝑉Impl,A = (𝜎, 𝜎∗,−−→out). Our
definition of adaptive history independence requires that the joint
distributions of (𝑉Impl,A, 𝑠) and (𝑉Impl,A, 𝑠

∗) be (𝜖, 𝛿)-close. We re-
strict ourselves to adversaries A such that ⟨Impl,A⟩ always termi-
nates, which we call valid adversaries.

Definition 3.3 (Adaptive (weak) history independence). An imple-
mentation Impl of an ADT is (𝜖, 𝛿)-history independent (AHI) if for
all valid adversaries A:

(𝑉Impl,A, 𝑠)
𝜖,𝛿≈ (𝑉Impl,A, 𝑠

∗)
where the distributions are given by the probability experiment de-
scribed above.

Essentially all (0, 0)-strongly HI data structures can be shown to
satisfy (0, 0)-AHI. The argument uses the following strong property
of SHI [24]: For every setting of the random string 𝑅 = 𝑟 , and for
every two logically equivalent sequences 𝜎, 𝜎∗, the data structure
stores the same state 𝑠 (𝜎, 𝑟) = 𝑠 (𝜎∗, 𝑟).

3.3 AHI and Deletion-as-Control
In Theorem 3.6, we state that data controllers that implement his-
tory independent ADTs satisfy deletion-as-control. This relation-
ship to deletion-as-control only makes sense if the ADT itself sup-
ports some notion of deletion, which we define as follows.

Consider an ADT where operations {op(𝑖𝑑)} are tagged with an
identifier 𝑖𝑑 ∈ {0, 1}∗ (e.g., the channel IDs). For a sequence 𝜎 of
operations and an 𝑖𝑑∗, let 𝜎−𝑖𝑑∗ be the sequence of operations with
every operation with identifier 𝑖𝑑∗ removed (that is, op(𝑖𝑑∗) for all
values of op).

Definition 3.4 (Logical Deletion). ADT supports logical deletion if
there exists an operation delete such that for all sequences of opera-

tions 𝜎 and for all IDs 𝑖𝑑∗:
(
𝜎 ∥delete(𝑖𝑑∗)

) 𝐿≡ 𝜎−𝑖𝑑∗ .

Next, we define the following syntax to allow ADTs to interface
with the deletion-as-control execution.

Definition 3.5 (Controller relative to an implementation). Let
Impl be an implementation of an ADT. We define the controller CImpl
relative to Impl as the controller that maintains state state and works
as follows:

• On input (cID,msg):
– (state′, out) ← Impl(op(cID), state), where op← msg.
– Write (cID, out) to the output tape.
• On input fail: Halt.

Theorem 3.6. For any ADT that supports logical deletion and
any Impl of the ADT satisfying (𝜖, 𝛿)-AHI (with either variant of
Definition 3.3), the controller C = CImpl is (𝜖, 𝛿)-deletion-as-control
compliant.

The proof in the full version [10] uses a simple, novel result
on indistinguishability, dubbed the Coupling Lemma, which we
present next.

Lemma 3.7 (Coupling Lemma). Let 𝑃,𝑄 be probability distributions
on sets X and Y, respectively, and let 𝑓 : X → Z and 𝑔 : Y → Z
be (deterministic) functions with the same codomainZ. Suppose that
𝑓 (𝑋) ≈𝜖,𝛿 𝑔(𝑌) when 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 .

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

Consider the collection of distributions {𝑄𝑥 ∈ Δ(Y) : 𝑥 ∈ X} on
the set Y, where 𝑄𝑥 denotes the distribution on 𝑌 conditioned on the
event that 𝑔(𝑌) = 𝑓 (𝑥) (that is 𝑄𝑥 = 𝑄 |{𝑦:𝑔 (𝑦)=𝑓 (𝑥) }). In the case
that 𝑔−1 (𝑓 (𝑥)) is empty, 𝑄𝑥 assigns probability to a default value
⊥ ∈ Y.

If we select 𝑋 ∼ 𝑃 and then sample 𝑌 ′ ∼ 𝑄𝑋 (so that Pr(𝑌 ′ =
𝑦 |𝑋 = 𝑥) = 𝑄𝑥 (𝑦)), then

(1) 𝑌 ′ ≈𝜖,𝛿 𝑌 , and
(2) 𝑓 (𝑋) = 𝑔(𝑌 ′) with probability at least 1 − 𝛿 over (𝑋,𝑌).

As a corollary to Theorem 3.6, any history independent imple-
mentation of the Private Cloud Storage touchstone or the Public Bul-
letin Board examples (from Section 1.1) satisfy deletion-as-control.

The Private Cloud Storage functionality works like a key-value
store: each user has their own dictionary𝐷𝑖𝑑 . To upload a file, a user
sends𝑈𝑝𝑙𝑜𝑎𝑑 (𝑖𝑑, 𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑓 𝑖𝑙𝑒) to the controller, which internally
adds (𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑓 𝑖𝑙𝑒) to𝐷𝑖𝑑 (if 𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒 already exists in𝐷𝑖𝑑 then
nothing happens). To download one of their own files, the user
sends 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (𝑖𝑑, 𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒) to the controller and receives the
corresponding 𝑓 𝑖𝑙𝑒 from 𝐷𝑖𝑑 , if one exists. To delete their account,
the user sends 𝐷𝑒𝑙𝑒𝑡𝑒 (𝑖𝑑), in which the controller removes dictio-
nary 𝐷𝑖𝑑 . Two sequences of operations are logically equivalent if,
for every user 𝑖𝑑 , the dictionary 𝐷𝑖𝑑 has the same logical content
after applying the two sequences.

We define the Public Bulletin Board functionality as follows:
users can post a message by sending 𝑃𝑜𝑠𝑡 (𝑖𝑑,𝑚𝑠𝑔) to the con-
troller; they can receive all messages currently on the board by
sending 𝑅𝑒𝑎𝑑 (); and they can delete all of their messages by send-
ing𝐷𝑒𝑙𝑒𝑡𝑒 (𝑖𝑑) to the controller. Internally, the Public Bulletin Board
stores an ordered list of (𝑖𝑑,𝑚𝑠𝑔) pairs (ordered by insertion time).
Two sequences of operations are logically equivalent if they yield
the same ordered list of (𝑖𝑑,𝑚𝑠𝑔) pairs.

Corollary 3.8. The Private Cloud Storage and Public Bulletin Board
touchstone controllers (Section 1.1) implemented with (𝜖, 𝛿)-adaptive
history independence each satisfy (𝜖, 𝛿)-deletion-as-control.

3.4 From Prior Definitions of Machine
Unlearning to History Independence

We claim that AHI captures the essence of existing definitions
of “machine unlearning" (that is, protocols that update a machine
learning model to reflect deletions from the training data). Each
definition in the literature corresponds to a special case of history
independence, though each weakens the definition in one or more
ways (even when their constructions satisfy the stronger, general
notion). For illustration, we discuss the approach of Gupta et al.
[23] in detail.

The basic correspondence comes via considering an abstract data
type, which we dub the Updatable ML, that extends a dictionary: it
maintains a multiset ®𝑥 of labeled examples from some universeZ.
In addition to allowing insert() and delete() operations, it accepts
a possibly randomized operation predict which outputs a predictor
(or other trained model)𝜓 trained on ®𝑥 . The accuracy requirement
for𝜓 is generally not fully specified, not least because many current
machine learning methods don’t come with worst-case guarantees.
The literature on machine unlearning generally requires that the
distribution of the final predictor𝜓 (e.g., the model parameters) is

approximately the same as it would be for a minimal sequence of
operations that leads to the same training data set. In particular,
deleting an individual Y should mean that𝜓 looks roughly the same
as if Y had never appeared in ®𝑥 . In principle one could satisfy the
requirement by simply retraining𝜓 from scratch every time the data
set changes, though this may be practically infeasible. The literature
therefore focuses on methods that allow for faster updates.

Specializing history independence to updatable ML. First, we spell
out how AHI (Definition 3.3) specializes to the Updatable ML ADT.
Given a sequence of updates and prediction queries 𝜎 = (𝑢1, ..., 𝑢𝑡),
let [𝜎] denote a canonical equivalent sequence of updates. For ex-
ample, [𝜎] may (a) discard any insertion/deletion pairs that operate
on the same element, with the insertion appearing first, and (b) list
the remaining operations in lexicographic order. In an interaction
with an implementation Impl that is initialized with an empty data
set, an adversary makes a sequence of queries 𝜎 (of which only
the updates actually affect the state) and, eventually, terminates at
some time step 𝑡 . Let 𝑠 the resulting state of the controller based
on randomness 𝑅, and let ®𝑥𝑡 be the final logical data set. After the
interaction ends, the adversary outputs some logically equivalent
sequence 𝜎∗ (for example, it could choose the canonical sequence
𝜎∗ = [𝜎]). Finally, run Impl from scratch with randomness 𝑅′ and
queries 𝜎∗ to get state 𝑠∗. The logical data set ®𝑥𝑡 is the same for 𝜎
and 𝜎∗ by construction. Definition 3.3 requires that

(𝜎, 𝑠) 𝜖,𝛿≈ (𝜎, 𝑠∗) . (3)

Definitions from the literature. The exact definition of deletion
varies from paper to paper (and some papers do not define terms
precisely). All formulate the problem in terms of what we call the
Updatable ML ADT. We claim their definitions are variations on
adaptive history independence, each with one or more of the fol-
lowing weakenings:

Restricted qeries Some papers consider only a subset of al-
lowed operations—e.g., in Ginart et al. [16], Sekhari et al. [36], Ul-
lah et al. [39] data is inserted as a batch, and then only deletions
occur.
One output versus future behavior Some consider only the out-
put of the system at one time (e.g., Gupta et al. [23], Neel et al.
[32], Sekhari et al. [36]), while others also consider the internal
state (e.g., Ginart et al. [16]). The narrower approach does not
constrain the future behavior of the system. Among those defini-
tions that consider the full state, none discuss issues of internal
representations; in this section, we also elide this distinction, as-
suming that datasets can be represented internally using strongly
history-independent data structures.
Nonadaptive qeries Except for Gupta et al. [23], the literature
considers only adversaries that specify the set of queries to be
issued in advance. For constructions that are (0, 0)-HI (that is, in
which the real and ideal distributions are identical), this comes
at no loss of generality. However, the nonadaptive and adaptive
versions of (𝜖, 𝛿)-HI for 𝛿 > 0 are very different [23]. Even in
Gupta et al. [23], the length 𝑡 of the query sequence is chosen
nonadaptively.
Symmetric vs asymmetric indistinguishability Ginart et al. [16]
and [23] consider a one-sidedweakening of (𝜖, 𝛿)-indistinguishability.

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

The definitions of Bourtoule et al. [5], Ginart et al. [16], Ullah et al.
[39] consider exact variants of unlearning (with 𝜖 = 𝛿 = 0), while
others Golatkar et al. [18, 19], Guo et al. [22], Gupta et al. [23], Neel
et al. [32], Sekhari et al. [36] consider approximate variants.

Despite generally formulating weaker definitions, the algorithms
in the literature often satisfy history independence. In particular,
because the constructions in Cao and Yang [6], Ginart et al. [16]
are fully deterministic, it is easy to see that they satisfy adaptive,
(0, 0)-strong history independence (by Theorem 1 in [24]). Some
constructions satisfy additional properties, such as storing much
less information than the full data set ®𝑥𝑡 (e.g., Cao and Yang [6],
Sekhari et al. [36]).

We discuss the relationship to one previous definition—that of
Gupta et al. [23]—in more detail in the full version, since the defini-
tion is subtle and the relationship is technically nontrivial. Briefly:
their definition is similar to AHI for the Updatable ML ADT, but
is weaker in that it looks at only one output (not all future behav-
ior), and that it uses a one-sided version of the indistinguishability
condition. We conjecture that the specific algorithms in Gupta et al.
[23] satisfy our stronger condition.

4 DELETION-AS-CONFIDENTIALITY AND
DELETION-AS-CONTROL

We study the relationship between the notion of deletion as confi-
dentiality from Garg et al. [15] (hereafter “the GGV definition”) and
our notion of deletion-as-control (Definition 2.3). Similar to Defini-
tion 2.3, deletion-as-confidentiality also considers two executions,
real and ideal. At the end of the two executions, they compare the
view of the environment 𝑉E and the state of the controller stateC.
Simplifying away (important but technical) details, the real GGV
execution is roughly the same as in deletion-as-control. The ideal
GGV execution simply drops all messages between Y and C. In-
formally, deletion-as-confidentiality requires that E’s view and C’s
final state are indistinguishable in the real and ideal worlds.

In Section 4.1, we define deletion-as-confidentiality—the defini-
tion closest in spirit to the GGV definition but in our execution
model. (We cannot directly compare our definition to GGV as they
are defined in different models of interaction, stemming from a
need in deletion-as-control to ‘sync’ the real and ideal executions.)
In Section 4.2, we show that for many data subjects Y, deletion-as-
confidentiality for Y implies deletion-as-control for Y (Theorem 4.3).
Finally, we show that the implication cannot hold for all data sub-
jects due to the differences in the execution models (Theorems 4.4
and 4.5).

4.1 Definition
Below, we define deletion-as-confidentiality by describing how it
differs from deletion-as-control. After the definition, we briefly ex-
plain how our adaptation of deletion-as-confidentiality differs from
that in [15]. Similar to Definition 2.3, deletion-as-confidentiality
also considers two executions—real and ideal. The real execution
is involves the three parties C, E, and Y. It defines the view of the
environment E, denoted 𝑉 𝑟𝑒𝑎𝑙

E and the state of the controller C,
denoted state𝑟𝑒𝑎𝑙C , at the end of the execution. 𝑉 𝑟𝑒𝑎𝑙

E includes E’s

randomness and transcript 𝜏𝑟𝑒𝑎𝑙E = (®q𝑟𝑒𝑎𝑙E , ®a𝑟𝑒𝑎𝑙E). The GGV def-
inition requires that (state𝑟𝑒𝑎𝑙C ,𝑉 𝑟𝑒𝑎𝑙

E) be indistinguishable from
the state and view in the ideal world where the data subject never
communicates with anybody. This definition inherently requires
that C can never reveal any information about one user’s data or
participation to another data or participation to another. GGV and
deletion-as-control differ mainly in 3 ways:

Ideal execution The ideal GGV execution also involves the same
three parties C, E, and Y—no dummy party D. The ideal GGV
execution drops all messages between Y and C. This execution
results in some view 𝑉 𝑖𝑑𝑒𝑎𝑙

E and some state state𝑖𝑑𝑒𝑎𝑙C .
Termination The real deletion-as-control execution ends after C
processes Y’s first delete message. The GGV execution ends when
E sends a special finish message to C. (Y then sends delete if
it hasn’t already.) Hence, the end time can depend on Y’s view
in deletion-as-control, but not in GGV. This difference reflects
our two fundamentally different approaches to defining the ideal
execution. (Thm 4.5 leverages this gap.)
Indistinguishability GGV requires (𝜖, 𝛿)-indistinguishability of
both 𝑉E and stateC. In contrast, deletion-as-control imposes no
requirement on 𝑉E. Moreover, GGV only requires indistinguisha-
bility for Y’s that don’t send any messages to E.10

Definition 4.1 ((𝜖, 𝛿) Deletion-as-Confidentiality for Y). For a
data subject Y, a controller C is (𝜖, 𝛿)-deletion-as-confidentiality
compliant for Y if for all E, in the executions involving C, E, Y,

(𝑉 𝑟𝑒𝑎𝑙
E , state𝑟𝑒𝑎𝑙C) 𝜖,𝛿≈ (𝑉 𝑖𝑑𝑒𝑎𝑙

E , state𝑖𝑑𝑒𝑎𝑙C) .

Definition 4.2 (Deletion-as-Confidentiality, adapted from [15]).
Let Ysilent be the set of data subjects Y that never send any messages
to E. C is (𝜖, 𝛿)-deletion-as-confidentiality compliant if it is (𝜖, 𝛿)-
deletion-as-confidentiality compliant for all Y ∈ Ysilent.

The version of deletion-as-confidentiality in Definition 4.2 differs
from the original definition of Garg et al. [15] in a few important
ways. First, [15] allows users to request deletion of the information
shared in specific interactions between Y and C. Simplifying, we
take deletion of a user’s data to be all or nothing. Second, [15]
allows users to delete many times, whereas we focus on a single
deletion. Third,C’s randomness tape is not read-once in [15]. Finally,
the execution model of [15] does not have authenticated channels,
which they show is necessary for non-trivial functionalities. In light
of this, we chose to build authentication into our execution model.

4.2 Control vs. Confidentiality
In spirit, deletion-as-confidentiality imposes a stronger indistin-
guishability requirement than deletion-as-control. The former re-
quires that no information about the deleted data is ever revealed,
whereas the latter only requires that the effect of the deleted data is
not present after the deletion happens. One might thus expect that
any C that satisfies Definition 4.2 would also satisfy Definition 2.3.
But deletion-as-control captures more general environments and

10Otherwise, GGVwould rule out functionalities where Y can determine if its messages
are delivered to C (e.g., getting an acknowledgement).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

data subjects than deletion-as-confidentiality. First, deletion-as-
control allows Y to communicate freely with E, whereas deletion-
as-confidentiality does not (i.e., Y ∈ Ysilent). Second, deletion-
as-control imposes a requirement as soon as Y deletes, whereas
deletion-as-confidentiality only requires indistinguishability after
E terminates the execution (which may be much later).

LetYsilent be as in Definition 4.2 andYdummy be the set of Y that
only delete when instructed by E. Let Ylift = Ysilent ∩ Ydummy.

Theorem 4.3. For any C and any Y ∈ Ylift, if C is (𝜖, 𝛿)-deletion-
as-confidentiality compliant for Y, then it is also (𝜖, 𝛿)-deletion-as-
control compliant for Y.

Theorems 4.4 and 4.5 show that the restriction in Theorem 4.3
that Y ∈ Ylift = Ydummy ∩ Ysilent is necessary.

Theorem 4.4. There exists C and Y ∈ Ydummy \ Ysilent such that
C satisfies (0, 0)-deletion-as-confidentiality, but C does not satisfy
(𝜖′, 𝛿 ′)-deletion-as-control for Y any 𝜖′ < ∞, 𝛿 ′ < 1.

Theorem 4.5. For any 𝛿 > 0, there exists C and Y ∈ Ysilent such
that (i) C satisfies (0, 𝛿)-deletion-as-confidentiality for Y, and (ii)
C does not satisfy (𝜖′, 𝛿 ′)-deletion-as-control for Y for any 𝜖 < ∞,
𝛿 ′ < 1.

5 DIFFERENTIAL PRIVACY AND
DELETION-AS-CONTROL

This section describes two ways of compiling (𝜖, 𝛿)-differentially
private mechanismsM into controllers satisfying (𝜖, 𝛿)-deletion-
as-compliance. The first applies to DP mechanisms that are run in
a batch setting on a single, centralized dataset: data summarization,
query release, or DP-SGD, for example (Section 5.1). The second ap-
plies to mechanisms satisfying pan-privacy under continual release
(Section 5.2) . Along the way we define non-adaptive event-level
pan privacy (one intrusion) with continual release, first defined by
Chan et al. [8], Dwork et al. [13], and an adaptive variant, building
on the adaptive continual release definition of Jain et al. [25]. Both
of our compilers make use of a SHI dictionary D (Section 3.1.1).

There is a strong intuitive connection between (approximate)
history independence and deletion-as-control, as illustrated by the
results of the previous section. This intuition is so strong that many
prior works on machine unlearning essentially equate deletion with
history independence (Section 3.4).

However, the examples of this section show that our notion of
deletion-as-control is much broader than history independence. For
instance, consider a controller as follows. At some time 𝑡0 the con-
troller computes a differentially-private approximation out𝑡0 to
the current number of users in the data set, and the controller
stores out𝑡0 and makes it available at all later times. Intuitively, this
controller does not satisfy any version of history independence:
even if every user request deletion at time 𝑡0 + 1, the stored out𝑡0
is unchanged—making this history easy to distinguish from one
where the all users deleted at time 𝑡0 − 1. It could, however, still
satisfy deletion-as-control.

Keeping time. Throughout this section we consider systems with a
global clock. This allows for controllers that publish the number of
weekly active users, say. For simplicity and generality, we allow the

environment to control time. Specifically, we introduce a special
query tick that only E can send to C to increment the clock.

5.1 Batch differential privacy
LetM : D ↦→ M(D) be a non-interactive differentially private
mechanismM.

We briefly describe a simple controllerCbatch
M that satisfies deletion-

as-control. Detailed pseudo-code is in the full version [10].
It works in three phases: before tick, during tick, and after tick.

At the beginning, Cbatch
M populates a dataset D stored as a SHI

dictionary from its input stream, returning ⊥ in response to every
query. When it receives the tick, it evaluates M(D), stores the
result as out, and erases the dictionary D. For all future queries,
Cbatch
M simply returns out. We assume for simplicity that the mech-

anismM is a function only of the logical contents of D, and is
independent of its memory representation.

Proposition 5.1.

(1) IfM is (𝜖, 𝛿)-DP, thenCbatch
M satisfies (𝜖, 𝛿)-deletion-as-control.

(2) For any 𝜖 > 0, supposeM is the Laplace mechanism with
parameter 𝜖 applied to a count of the number of record in its
input. Then Cbatch

M satisfies (𝜖, 𝛿)-deletion-as-control but is
not (𝜖′, 𝛿 ′)-HI for any 𝜖′ < ∞ and 𝛿 ′ < 1.

The second part of the proposition really applies to any DP
mechanism that releases useful information about its inputs—the
argument relies just on the fact thatM acts differently on the empty
data set than it does on a data set with many records. In particular,
the DP Machine learning example from Section 1.1, which trains a
model using DP-SGD, satisfies deletion-as-control.

Corollary 5.2. The (𝜖, 𝛿)-DP Machine Learning touchstone con-
troller (Section 1.1) satisfies (𝜖, 𝛿)-deletion-as-control.

5.2 Pan-privacy under continual release
In the full version [10], we formalize a definition of adaptive pan-
privacy under continual release (against a single intrusion), ex-
tending the non-adaptive versions originally defined in [8, 13]. The
continual release setting concerns an online controller that processes
a stream of elements and produces outputs at regular time intervals.
We prove the following theorem which gives a general transforma-
tion from an adaptive pan private mechanismM to a controller
Cpp
M satisfying deletion-as-control. Roughly, Cpp

M emulates a copy
ofM. For each 𝑖𝑑 , Cpp

M passes the first operation from 𝑖𝑑 toM
and filters out subsequent operations. It uses a SHI dictionary D
to implement the filter. To delete, 𝑖𝑑 is removed from D butM is
unaffected. (Note that a deleted user can then issue a new query to
M; we make no guarantees for such users.)

Theorem 5.3 (Informal). If a controllerM satisfies (𝜖, 𝛿)-adaptive
event-level pan-privacy with continual-release, then Cpp

M satisfies
(𝜖, 𝛿)-deletion-as-control.

The proof first shows that Cpp
M satisfies deletion-as-control, and

then shows that—for Cpp
M specifically—the restriction to Ylift in

Theorem 4.3 is without loss of generality.

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

5.3 Examples of pan-private controllers
5.3.1 Counters. Perhaps the most widely studied algorithm that
is pan-private under continual release is the tree mechanism of
Chan et al. [8], Dwork et al. [12]. Although originally formulated
without pan-privacy, it relies on the composition of summations
over different time intervals. Each of these can be made pan-private
against a single intrusion by adding noise when the counter is
initialized and again at release [13]. The overall mechanism retains
the same asymtptotic guarantees, since the noise at most doubles,
and enjoys pan-privacy. We summarize its properties here:

Proposition 5.4 (Combining [13] with [8, 12]). There is an (𝜖, 𝛿)-
adaptively event-level pan-private under continual-release algorithm
that takes a time horizon𝑇 and a sequence of inputs 𝑥1, 𝑥2, ... ∈ [0, 1]
and at the 𝑡-th tick, for 𝑡 ∈ [𝑇], releases out𝑡 such that

out𝑡 =
∑︁

𝑖 :𝑥𝑖 received
by time 𝑡

𝑥𝑖 + 𝑍𝑡 ,

where 𝑍𝑡 ’s are distributed (independently of 𝑥𝑖 ’s but not each other)

as 𝑍𝑡 ∼ 𝑁 (0, 𝜎2𝑡) with 𝜎𝑡 = 𝑂

(√︃
log3𝑇 log(1/𝛿)

𝜖

)
.

In Section 6, we use the treemechanism as a building block to con-
struct a controller that satisfies deletion-as-control but not history
independence, confidentiality, nor differential privacy. Moreover,
one can use the tree mechanism to construct a controller that satis-
fies deletion-as-control but not history independence (cf. Proposi-
tion 5.1). The controller could, for example, use the tree mechanism
to count the number of distinct users 𝑛 it has seen. Applying Theo-
rem 5.3, a controller could publish 𝑛 + 𝑁 (0, 𝜎2𝑡) even after all users
have requested deletion, all while satisfying deletion-as-control.
Such functionality is impossible under history independence.

5.3.2 Learning under Pan-Private Continual Release (and with Dele-
tion). As an example, we show how the results of this section allow
one to maintain a model trained via gradient descent with relatively
little noise—the algorithm’s error is similar to that of state of the
art federated machine learning algorithms.

Consider the following optimization problem: given a loss func-
tion ℓ : Θ × X → R and a data set ®𝑥 = (𝑥1, ..., 𝑥𝑛), we aim to find
ℎ ∈ Θ which approximately minimizes

L®𝑥 (ℎ) =
𝑛∑︁
𝑖=1

ℓ (ℎ;𝑥𝑖) . (4)

To analyze convergence, we assume a convex loss function. Nev-
ertheless, the method we give applies more broadly—the privacy
or deletion guarantees hold regardless of convexity, and the algo-
rithms makes sense as long as the loss function is roughly convex
near its minimum.

Algorithms for this problem that are differentially private un-
der continual release were studied for online learning and efficient
distributed learning [27]. The algorithm they consider is not panpri-
vate. However, it only access the data via the tree-based mechanism
for continual release of a sum [8, 12] (in this case, releasing the sum
of the gradients of users’ contributions to the overall loss function

over the evaluation of a first-order optimization algorithm). We ob-
served above that this can be made panprivate with only a constant
factor increase in the added noise (Proposition 5.4)

To allow us to apply the convergence analysis of Kairouz et al.
[27] as a black box, we assume: (1)Θ is convex, and ℓ (·;𝑥) is convex
for every choice of 𝑥 ; (2) ℓ is 1-Lipschitz inℎ (that is, supposeΘ ∈ R𝑑
and for all ℎ,ℎ′ and 𝑥 , we have |ℓ (ℎ;𝑥) − ℓ (ℎ′;𝑥) | ≤ ∥ℎ − ℎ′∥2);
(3) One new user arrives between adjacent ticks, though deletions
may occur at any time.

Proposition 5.5 (Derived from Theorem 5.1 from arXiv v3 of
Kairouz et al. [27]). There is an (𝜖, 𝛿)-adaptively pan-private, continual-
release algorithm that takes takes a time horizon 𝑇 , a learning rate
𝜆 > 0, and a sequence of inputs 𝑥1, 𝑥2, ... and at the 𝑡-th tick releases
a model ℎ𝑡 such that, for every 𝑡 ∈ [𝑇], data set ®𝑥𝑡 ∈ Z𝑛 (consisting
of records received by tick 𝑡), ℎ∗ ∈ Θ, and 𝛽 > 0, with probability at
least 1 − 𝛽 over the coins of the algorithm,

L®𝑥𝑡 (ℎ𝑡) − L®𝑥𝑡 (ℎ
∗) =

𝑂

(
𝜆∥ℎ∗∥2

𝑛
+

√︁
𝑑 ln(1/𝛿) ln(𝑇) ln(𝑛/𝛽)

𝜖𝜆

)
.

This result immediately yields a controller that satisfies (𝜖, 𝛿)-
deletion as control and maintains a model whose accuracy tracks
that of the best model trained on all the arrivals so far (where re-
peated arrivals of the same user are ignored). The version above uses
a fixed learning rate 𝜆 which can be tuned to get error �̃� (𝑑1/4/

√
𝑛)

for any particular 𝑛; however, one could also decrease the learning
rate as 1/

√
𝑡 to get bounds that hold for all data set sizes.

In contrast to the HI-style algorithms proposed for machine
unlearning [23], this controller need not update the model when a
user is deleted.

6 PARALLEL COMPOSITION
In this section, we show that our definition does more than unify
approaches to deletion based on history independence, confidential-
ity, and differential privacy. We describe a controller that satisfies
deletion-as-control but none of the other three notions. To prove
that the controller satisfies deletion-as-control, we prove that the
definition enjoys a limited form of parallel composition: a controller
that is built from two constituent sub-controllers, each of which is
run independently (Figure 4), will be deletion compliant if the com-
ponent controllers are compliant and satisfy additional conditions.
We focus on a special case that suffices for our needs, and leave a
general treatment of composition of deletion-as-control for future
work.

To anchor the discussion, we consider the touchstone composed
controller “Public Directory with DP Statistics,” described in Algo-
rithm 1. It provides a public directory (e.g., a phone book) which,
in addition to answering directory queries, periodically reports
the total number of users that have made queries to the directory.
We build the touchstone controller C from two SHI dictionaries
D andU (Section 3.1.1) and the pan-private tree mechanismM
(Proposition 5.4). D implements the directory functionalities of
reading and writing.M keeps track of an approximate count of
users—current and former—that have looked up an entry in D for

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Aloni Cohen, Adam Smith, Marika Swanberg, & Prashant Nalini Vasudevan

Figure 4: Parallel composition of controllers C0 and C1.

the first 𝑇 epochs (e.g., the time between ticks).U is an auxiliary
dictionary used to ensure thatM counts distinct users.

Algorithm 1 Public directory with DP statistics

1: procedure Initialize(𝑇 ∈ N, 𝜖, 𝛿)
2: Initialize two SHI dictionaries D for the directory andU

for users. Initialize the tree mechanismM with parameters
(𝜖, 𝛿,𝑇)

3: procedure Activate(cID, op(𝑎𝑟𝑔))
4: if op = delete then
5: D .delete(cID)
6: U .delete(cID)
7: return ⊥
8: if op = set then
9: D .set(cID, 𝑎𝑟𝑔)
10: return ⊥
11: if op = get then
12: if cID ∉ U then
13: U .set(cID, 1)
14: Insert the value 1 intoM’s data stream
15: return D .get(𝑎𝑟𝑔)
16: if op = getCount then
17: returnM(tick)

To prove that C satisfies deletion-as-control, we prove that one
can build deletion-as-control controllers from two constituent sub-
controllers by parallel composition. We consider the special case
where one sub-controller satisfies (0, 0)-deletion-as-control and im-
plements a deterministic functionality, andwhere both sub-controllers
are query-response controllers. We define these next. Note that the
controllers given in Section 3.2 and Section 5 are all query-response
controllers. While we restrict our attention to a single controller
of each type, the result immediately extends by induction to many
query-response controllers satisfying (0, 0) deletion-as-control with
deterministic functionalities.

Definition 6.1 (Deterministic functionality). A controller C imple-
ments a deterministic functionality if for all E, Y, the transcript of
⟨C(𝑅C), E, Y⟩ is independent of 𝑅C.
Definition 6.2 (Query-response controller). C is a query-response
controller if it always replies to the same party that activated it.
Namely, when C is activated with (cID,msg) on its input tape, it
always halts with (cID,msg′) on its output tape for some msg′.

The example controllers we discuss are generally query-response.
But a messaging server, for example, might not be: a request from

Alice to send something Bob could result in a push from the server
to Bob.

Definition 6.3 (Parallel composition). Let C0 and C1 be controllers.
We define their parallel composition, denoted C0∥1, to be the con-
troller that emulates C0 an C1 internally. When activated with op𝑖𝑑 ,
C0∥1 computes out0 ← C0 (op𝑖𝑑) and out1 ← C1 (op𝑖𝑑) and returns
out0∥1 = (out0, out1). The controllers C0 and C1 are emulated with
disjoint portions of C0∥1’s randomness tape 𝑅0∥1 = (𝑅0, 𝑅1) and work
tape state0∥1 = (state0, state1).

Theorem 6.4. Let C0 and C1 be query-response controllers and
let 𝐶0∥1 be their parallel composition. If C0 satisfies (𝜖, 𝛿)-deletion-
as-control, and if C1 satisfies (0, 0)-deletion-as-control and has deter-
ministic functionality, then C0∥1 satisfies (𝜖, 𝛿)-deletion-as-control.

Corollary 6.5. The Public Directory with DP Statistics (defined
formally in [10]) satisfies (𝜖, 𝛿)-deletion-as-control.

Proof. Let C0 be the controller C
pp
M defined relative to the pan-

private tree mechanismM . Let C1 be the controller relative to
a SHI dictionary (Definition 3.5). By construction, C0 and C1 are
query-response controllers and C1 has a deterministic functionality.
C0 satisfies (𝜖, 𝛿) deletion-as-control andC1 satisfies (𝜖, 𝛿) deletion-
as-control (Theorems 5.3 and 3.6 respectively). The Public Directory
with DP Statistics is equivalent to the parallel composition C0∥1 of
C0 and C1. By parallel composition, the Public directory with DP
statistics satisfies (𝜖, 𝛿) deletion-as-control. □

7 CONCLUSION
Defining deletion-as-control in a way that is both expressive and
meaningful is the central challenge of our work. We believe that
our definition succeeds, providing a new perspective to the ongoing
discussion on how to give users control over their data.

More work is needed to understand how deletion-as-control
handles the complexity of real-life functionalities. For example, we
are far from understanding the implications for something like
Twitter, though the Public Bulletin Board serves as a starting point.
Analyzing complex functionalities may involve further studying the
adaptive variants of history independence and pan-privacy defined
in this work. Beyond specific functionalities, more work is needed
to interpret the guarantees provided by our notion. In particular, we
have a limited view of what can be said about groups of individuals
and about composition.

These are directions for future technical work, but also for nor-
mative, legal, and policy considerations. Consider, for example, the
goal of machine unlearning: maintaining a model while respect-
ing requests to delete. The algorithms in the machine unlearning
literature seek to approximate what one would get by retraining
from scratch (that is, history independence). But using adaptive
pan-privacy, one can satisfy deletion-as-control without updating
the model in response to deletion requests. Each behavior might
be appropriate for a different setting, depending on the most rele-
vant measure of model accuracy. The difference may also relate to
whether one adopts an individual- or group-based view of a right
to erasure. We hope that our work inspires further exploration of
these questions.

Control, Confidentiality, and the Right to be Forgotten CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ACKNOWLEDGMENTS
We are grateful to helpful discussions with many colleagues, no-
tably Kobbi Nissim. A.C. by the National Science Foundation under
Grant No. 1915763 and by the DARPA SIEVE program under Agree-
ment No. HR00112020021. A.S. and M.S. were supported by NSF
awards CCF-1763786 and CNS-2120667, as well as faculty research
awards from Google and Apple. P.V. was supported by the Na-
tional Research Foundation, Singapore, under its NRF Fellowship
programme, award no. NRF-NRFF14-2022-0010.

REFERENCES
[1] A. Achille, M. Kearns, C. Klingenberg, and S. Soatto. Ai model disgorgement:

Methods and choices. arXiv preprint arXiv:2304.03545, 2023.
[2] M. Altman, A. Cohen, K. Nissim, and A. Wood. What a hybrid legal-technical

analysis teaches us about privacy regulation: The case of singling out. BUJ Sci. &
Tech. L., 27:1, 2021.

[3] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium
on foundations of computer science, pages 464–473. IEEE, 2014.

[4] G. E. Blelloch and D. Golovin. Strongly history-independent hashing with ap-
plications. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2007. doi: 10.1109/FOCS.2007.36.

[5] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers,
B. Zhang, D. Lie, and N. Papernot. Machine unlearning. In 42nd IEEE Sym-
posium on Security and Privacy, 2021. doi: 10.1109/SP40001.2021.00019.

[6] Y. Cao and J. Yang. Towards making systems forget with machine unlearning. In
2015 IEEE Symposium on Security and Privacy, pages 463–480. IEEE, 2015.

[7] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson, et al. Extracting training data from large
language models. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2633–2650, 2021.

[8] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics.
ACM Transactions on Information and System Security (TISSEC), 14(3):1–24, 2011.

[9] A. Cohen and K. Nissim. Linear program reconstruction in practice. Journal of
Privacy and Confidentiality, 10(1), Jan. 2020. doi: 10.29012/jpc.711. URL https:
//journalprivacyconfidentiality.org/index.php/jpc/article/view/711.

[10] A. Cohen, A. Smith, M. Swanberg, and P. N. Vasudevan. Control, confidentiality,
and the right to be forgotten. arXiv preprint arXiv:2210.07876, 2022.

[11] Court of Justice of the European Union. Press release no 70/14. https://curia.
europa.eu/jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf, May 2013.

[12] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under
continual observation. In L. J. Schulman, editor, Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, pages 715–724. ACM, 2010. doi:
10.1145/1806689.1806787.

[13] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private
streaming algorithms. In ICS, pages 66–80, 2010.

[14] B. Fowler. Data breaches break record in 2021. CNET, 2022. URL
https://www.cnet.com/news/privacy/record-number-of-data-breaches-
reported-in-2021-new-report-says/.

[15] S. Garg, S. Goldwasser, and P. N. Vasudevan. Formalizing data deletion in the
context of the right to be forgotten. In Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II
30, pages 373–402. Springer, 2020.

[16] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. Making ai forget you: Data deletion
in machine learning. In Advances in Neural Information Processing Systems, pages
3513–3526, 2019.

[17] J. Godin and P. Lamontagne. Deletion-compliance in the absence of privacy. In
2021 18th International Conference on Privacy, Security and Trust (PST), pages 1–10.
IEEE, 2021.

[18] A. Golatkar, A. Achille, and S. Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 9304–9312, 2020.
[19] A. Golatkar, A. Achille, and S. Soatto. Forgetting outside the box: Scrubbing

deep networks of information accessible from input-output observations. arXiv
preprint arXiv:2003.02960, 2020.

[20] Google. Right to be forgotten overview. https://support.google.com/legal/answer/
10769224. Accessed: 2023-04-18.

[21] Google. Helping public health officials combat covid-19. https://blog.google/
technology/health/covid-19-community-mobility-reports/, 2020. Accessed: 2023-
04-18.

[22] C. Guo, T. Goldstein, A. Hannun, and L. van der Maaten. Certified data removal
from machine learning models, 2020.

[23] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites. Adaptive
machine unlearning. Advances in Neural Information Processing Systems, 34:
16319–16330, 2021.

[24] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. C. Rocke. Character-
izing history independent data structures. Algorithmica, 42(1):57–74, 2005.

[25] P. Jain, S. Raskhodnikova, S. Sivakumar, and A. D. Smith. The price of differential
privacy under continual observation. CoRR, abs/2112.00828, 2021. URL https:
//arxiv.org/abs/2112.00828.

[26] JASON. Consistency of data products and formal privacy methods for the 2020
Census. Panel Report JSR 21-02, JASON, The MITRE Corporation, 1 2022.

[27] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu. Practical
and private (deep) learning without sampling or shuffling. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning (ICML), 2021.

[28] G. King and N. Persily. Unprecedented facebook urls dataset now
available for academic research through social science one. https:
//socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-
research-through-social-science-one, 2020. Accessed: 2023-04-18.

[29] D. Micciancio. Oblivious data structures: applications to cryptography. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 456–464, 1997.

[30] M. Naor and V. Teague. Anti-persistence: History independent data structures.
In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 492–501, 2001.

[31] National Conference of State Legislatures. State laws related to digital pri-
vacy. https://www.ncsl.org/technology-and-communication/state-laws-related-
to-digital-privacy, June 2022. Accessed: 2023-04-18.

[32] S. Neel, A. Roth, and S. Sharifi-Malvajerdi. Descent-to-delete: Gradient-based
methods for machine unlearning, 2020.

[33] A. Ng. Homeland Security records show ’shocking’ use of phone data, ACLU says.
Politico, 2022. URL https://www.politico.com/news/2022/07/18/dhs-location-
data-aclu-00046208.

[34] K. Nissim, A. Bembenek, A. Wood, M. Bun, M. Gaboardi, U. Gasser, D. R. O’Brien,
T. Steinke, and S. Vadhan. Bridging the gap between computer science and legal
approaches to privacy. Harv. JL & Tech., 31:687, 2017.

[35] Y. Polyanskiy. Two fundamental probabilistic models. https://ocw.mit.edu/
courses/6-436j-fundamentals-of-probability-fall-2018/resources/mit6_436jf18_
lec02/, 2018. Accessed: 2023-04-18.

[36] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want
to forget: Algorithms for machine unlearning. arXiv preprint arXiv:2103.03279,
2021.

[37] R. K. Slaughter, J. Kopec, and M. Batal. Algorithms and economic justice: A
taxonomy of harms and a path forward for the federal trade commission. Yale JL
& Tech., 23:1, 2020.

[38] A. Thudi, H. Jia, I. Shumailov, and N. Papernot. On the necessity of auditable algo-
rithmic definitions for machine unlearning. In 31st USENIX Security Symposium
(USENIX Security 22), pages 4007–4022, 2022.

[39] E. Ullah, T.Mai, A. Rao, R. Rossi, and R. Arora. Machine unlearning via algorithmic
stability. arXiv preprint arXiv:2102.13179, 2021.

[40] US Census Bureau. Why the Census Bureau chose differential privacy. Technical
Report C2020BR-03, US Census Bureau, March 2023.

[41] S. Vadhan and W. Zhang. Concurrent composition theorems for all standard
variants of differential privacy. arXiv preprint arXiv:2207.08335, 2022. To appear
in the 55th Annual ACM Symposium on Theory of Computing (STOC), 2023.

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/711
https://curia.europa.eu/jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2014-05/cp140070en.pdf
https://www.cnet.com/news/privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/
https://www.cnet.com/news/privacy/record-number-of-data-breaches-reported-in-2021-new-report-says/
https://support.google.com/legal/answer/10769224
https://support.google.com/legal/answer/10769224
https://blog.google/technology/health/covid-19-community-mobility-reports/
https://blog.google/technology/health/covid-19-community-mobility-reports/
https://arxiv.org/abs/2112.00828
https://arxiv.org/abs/2112.00828
https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://socialscience.one/blog/unprecedented-facebook-urls-dataset-now-available-research-through-social-science-one
https://www.ncsl.org/technology-and-communication/state-laws-related-to-digital-privacy
https://www.ncsl.org/technology-and-communication/state-laws-related-to-digital-privacy
https://www.politico.com/news/2022/07/18/dhs-location-data-aclu-00046208
https://www.politico.com/news/2022/07/18/dhs-location-data-aclu-00046208
https://ocw.mit.edu/courses/6-436j-fundamentals-of-probability-fall-2018/resources/mit6_436jf18_lec02/
https://ocw.mit.edu/courses/6-436j-fundamentals-of-probability-fall-2018/resources/mit6_436jf18_lec02/
https://ocw.mit.edu/courses/6-436j-fundamentals-of-probability-fall-2018/resources/mit6_436jf18_lec02/

	Abstract
	1 Introduction
	1.1 Touchstone Examples
	1.2 Contributions
	1.3 Defining deletion-as-control
	1.4 Prior Work
	1.5 Paper Structure

	2 Deletion-as-control
	2.1 (,)-indistinguishability
	2.2 Parties and simplified execution model
	2.3 Defining Deletion-as-Control
	2.4 Discussion of the definition

	3 History Independence and Deletion-as-control
	3.1 History independence
	3.2 Adaptive History Independence (AHI)
	3.3 AHI and Deletion-as-Control
	3.4 From Prior Definitions of Machine Unlearning to History Independence

	4 Deletion-as-confidentiality and Deletion-as-control
	4.1 Definition
	4.2 Control vs. Confidentiality

	5 Differential Privacy and Deletion-as-control
	5.1 Batch differential privacy
	5.2 Pan-privacy under continual release
	5.3 Examples of pan-private controllers

	6 Parallel Composition
	7 Conclusion
	Acknowledgments
	References

